ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bastop Unicode version

Theorem bastop 14052
Description: Two ways to express that a basis is a topology. (Contributed by NM, 18-Jul-2006.)
Assertion
Ref Expression
bastop  |-  ( B  e.  TopBases  ->  ( B  e. 
Top 
<->  ( topGen `  B )  =  B ) )

Proof of Theorem bastop
StepHypRef Expression
1 tgtop 14045 . 2  |-  ( B  e.  Top  ->  ( topGen `
 B )  =  B )
2 tgcl 14041 . . 3  |-  ( B  e.  TopBases  ->  ( topGen `  B
)  e.  Top )
3 eleq1 2252 . . 3  |-  ( (
topGen `  B )  =  B  ->  ( ( topGen `
 B )  e. 
Top 
<->  B  e.  Top )
)
42, 3syl5ibcom 155 . 2  |-  ( B  e.  TopBases  ->  ( ( topGen `  B )  =  B  ->  B  e.  Top ) )
51, 4impbid2 143 1  |-  ( B  e.  TopBases  ->  ( B  e. 
Top 
<->  ( topGen `  B )  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2160   ` cfv 5235   topGenctg 12762   Topctop 13974   TopBasesctb 14019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-topgen 12768  df-top 13975  df-bases 14020
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator