ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgtop Unicode version

Theorem tgtop 14655
Description: A topology is its own basis. (Contributed by NM, 18-Jul-2006.)
Assertion
Ref Expression
tgtop  |-  ( J  e.  Top  ->  ( topGen `
 J )  =  J )

Proof of Theorem tgtop
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eltg3 14644 . . . 4  |-  ( J  e.  Top  ->  (
x  e.  ( topGen `  J )  <->  E. y
( y  C_  J  /\  x  =  U. y ) ) )
2 simpr 110 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  x  =  U. y )  ->  x  =  U. y )
3 uniopn 14588 . . . . . . . 8  |-  ( ( J  e.  Top  /\  y  C_  J )  ->  U. y  e.  J
)
43adantr 276 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  x  =  U. y )  ->  U. y  e.  J )
52, 4eqeltrd 2284 . . . . . 6  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  x  =  U. y )  ->  x  e.  J )
65expl 378 . . . . 5  |-  ( J  e.  Top  ->  (
( y  C_  J  /\  x  =  U. y )  ->  x  e.  J ) )
76exlimdv 1843 . . . 4  |-  ( J  e.  Top  ->  ( E. y ( y  C_  J  /\  x  =  U. y )  ->  x  e.  J ) )
81, 7sylbid 150 . . 3  |-  ( J  e.  Top  ->  (
x  e.  ( topGen `  J )  ->  x  e.  J ) )
98ssrdv 3207 . 2  |-  ( J  e.  Top  ->  ( topGen `
 J )  C_  J )
10 bastg 14648 . 2  |-  ( J  e.  Top  ->  J  C_  ( topGen `  J )
)
119, 10eqssd 3218 1  |-  ( J  e.  Top  ->  ( topGen `
 J )  =  J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   E.wex 1516    e. wcel 2178    C_ wss 3174   U.cuni 3864   ` cfv 5290   topGenctg 13201   Topctop 14584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-topgen 13207  df-top 14585
This theorem is referenced by:  eltop  14656  eltop2  14657  eltop3  14658  bastop  14662  tgtop11  14663  basgen  14667  bastop1  14670  resttop  14757
  Copyright terms: Public domain W3C validator