ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgtop Unicode version

Theorem tgtop 12862
Description: A topology is its own basis. (Contributed by NM, 18-Jul-2006.)
Assertion
Ref Expression
tgtop  |-  ( J  e.  Top  ->  ( topGen `
 J )  =  J )

Proof of Theorem tgtop
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eltg3 12851 . . . 4  |-  ( J  e.  Top  ->  (
x  e.  ( topGen `  J )  <->  E. y
( y  C_  J  /\  x  =  U. y ) ) )
2 simpr 109 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  x  =  U. y )  ->  x  =  U. y )
3 uniopn 12793 . . . . . . . 8  |-  ( ( J  e.  Top  /\  y  C_  J )  ->  U. y  e.  J
)
43adantr 274 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  x  =  U. y )  ->  U. y  e.  J )
52, 4eqeltrd 2247 . . . . . 6  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  x  =  U. y )  ->  x  e.  J )
65expl 376 . . . . 5  |-  ( J  e.  Top  ->  (
( y  C_  J  /\  x  =  U. y )  ->  x  e.  J ) )
76exlimdv 1812 . . . 4  |-  ( J  e.  Top  ->  ( E. y ( y  C_  J  /\  x  =  U. y )  ->  x  e.  J ) )
81, 7sylbid 149 . . 3  |-  ( J  e.  Top  ->  (
x  e.  ( topGen `  J )  ->  x  e.  J ) )
98ssrdv 3153 . 2  |-  ( J  e.  Top  ->  ( topGen `
 J )  C_  J )
10 bastg 12855 . 2  |-  ( J  e.  Top  ->  J  C_  ( topGen `  J )
)
119, 10eqssd 3164 1  |-  ( J  e.  Top  ->  ( topGen `
 J )  =  J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348   E.wex 1485    e. wcel 2141    C_ wss 3121   U.cuni 3796   ` cfv 5198   topGenctg 12594   Topctop 12789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-topgen 12600  df-top 12790
This theorem is referenced by:  eltop  12863  eltop2  12864  eltop3  12865  bastop  12869  tgtop11  12870  basgen  12874  bastop1  12877  resttop  12964
  Copyright terms: Public domain W3C validator