ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgtop Unicode version

Theorem tgtop 14742
Description: A topology is its own basis. (Contributed by NM, 18-Jul-2006.)
Assertion
Ref Expression
tgtop  |-  ( J  e.  Top  ->  ( topGen `
 J )  =  J )

Proof of Theorem tgtop
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eltg3 14731 . . . 4  |-  ( J  e.  Top  ->  (
x  e.  ( topGen `  J )  <->  E. y
( y  C_  J  /\  x  =  U. y ) ) )
2 simpr 110 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  x  =  U. y )  ->  x  =  U. y )
3 uniopn 14675 . . . . . . . 8  |-  ( ( J  e.  Top  /\  y  C_  J )  ->  U. y  e.  J
)
43adantr 276 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  x  =  U. y )  ->  U. y  e.  J )
52, 4eqeltrd 2306 . . . . . 6  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  x  =  U. y )  ->  x  e.  J )
65expl 378 . . . . 5  |-  ( J  e.  Top  ->  (
( y  C_  J  /\  x  =  U. y )  ->  x  e.  J ) )
76exlimdv 1865 . . . 4  |-  ( J  e.  Top  ->  ( E. y ( y  C_  J  /\  x  =  U. y )  ->  x  e.  J ) )
81, 7sylbid 150 . . 3  |-  ( J  e.  Top  ->  (
x  e.  ( topGen `  J )  ->  x  e.  J ) )
98ssrdv 3230 . 2  |-  ( J  e.  Top  ->  ( topGen `
 J )  C_  J )
10 bastg 14735 . 2  |-  ( J  e.  Top  ->  J  C_  ( topGen `  J )
)
119, 10eqssd 3241 1  |-  ( J  e.  Top  ->  ( topGen `
 J )  =  J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395   E.wex 1538    e. wcel 2200    C_ wss 3197   U.cuni 3888   ` cfv 5318   topGenctg 13287   Topctop 14671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-topgen 13293  df-top 14672
This theorem is referenced by:  eltop  14743  eltop2  14744  eltop3  14745  bastop  14749  tgtop11  14750  basgen  14754  bastop1  14757  resttop  14844
  Copyright terms: Public domain W3C validator