ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  times2i Unicode version

Theorem times2i 8474
Description: A number times 2. (Contributed by NM, 11-May-2004.)
Hypothesis
Ref Expression
2times.1  |-  A  e.  CC
Assertion
Ref Expression
times2i  |-  ( A  x.  2 )  =  ( A  +  A
)

Proof of Theorem times2i
StepHypRef Expression
1 2times.1 . 2  |-  A  e.  CC
2 times2 8472 . 2  |-  ( A  e.  CC  ->  ( A  x.  2 )  =  ( A  +  A ) )
31, 2ax-mp 7 1  |-  ( A  x.  2 )  =  ( A  +  A
)
Colors of variables: wff set class
Syntax hints:    = wceq 1287    e. wcel 1436  (class class class)co 5607   CCcc 7285    + caddc 7290    x. cmul 7292   2c2 8400
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-resscn 7374  ax-1cn 7375  ax-1re 7376  ax-icn 7377  ax-addcl 7378  ax-addrcl 7379  ax-mulcl 7380  ax-mulcom 7383  ax-mulass 7385  ax-distr 7386  ax-1rid 7389  ax-cnre 7393
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rex 2361  df-v 2617  df-un 2992  df-in 2994  df-ss 3001  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-br 3821  df-iota 4943  df-fv 4986  df-ov 5610  df-2 8409
This theorem is referenced by:  3t2e6  8499  4t2e8  8501  6t2e12  8905  7t2e14  8910  8t2e16  8916  9t2e18  8923
  Copyright terms: Public domain W3C validator