| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > times2i | GIF version | ||
| Description: A number times 2. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 2times.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| times2i | ⊢ (𝐴 · 2) = (𝐴 + 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2times.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | times2 9164 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 2) = (𝐴 + 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 · 2) = (𝐴 + 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ∈ wcel 2175 (class class class)co 5943 ℂcc 7922 + caddc 7927 · cmul 7929 2c2 9086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulcom 8025 ax-mulass 8027 ax-distr 8028 ax-1rid 8031 ax-cnre 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-iota 5231 df-fv 5278 df-ov 5946 df-2 9094 |
| This theorem is referenced by: 3t2e6 9192 4t2e8 9194 6t2e12 9606 7t2e14 9611 8t2e16 9617 9t2e18 9624 |
| Copyright terms: Public domain | W3C validator |