ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  times2i GIF version

Theorem times2i 9009
Description: A number times 2. (Contributed by NM, 11-May-2004.)
Hypothesis
Ref Expression
2times.1 𝐴 ∈ ℂ
Assertion
Ref Expression
times2i (𝐴 · 2) = (𝐴 + 𝐴)

Proof of Theorem times2i
StepHypRef Expression
1 2times.1 . 2 𝐴 ∈ ℂ
2 times2 9007 . 2 (𝐴 ∈ ℂ → (𝐴 · 2) = (𝐴 + 𝐴))
31, 2ax-mp 5 1 (𝐴 · 2) = (𝐴 + 𝐴)
Colors of variables: wff set class
Syntax hints:   = wceq 1348  wcel 2141  (class class class)co 5853  cc 7772   + caddc 7777   · cmul 7779  2c2 8929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulcom 7875  ax-mulass 7877  ax-distr 7878  ax-1rid 7881  ax-cnre 7885
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-iota 5160  df-fv 5206  df-ov 5856  df-2 8937
This theorem is referenced by:  3t2e6  9034  4t2e8  9036  6t2e12  9446  7t2e14  9451  8t2e16  9457  9t2e18  9464
  Copyright terms: Public domain W3C validator