ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  times2i GIF version

Theorem times2i 9138
Description: A number times 2. (Contributed by NM, 11-May-2004.)
Hypothesis
Ref Expression
2times.1 𝐴 ∈ ℂ
Assertion
Ref Expression
times2i (𝐴 · 2) = (𝐴 + 𝐴)

Proof of Theorem times2i
StepHypRef Expression
1 2times.1 . 2 𝐴 ∈ ℂ
2 times2 9136 . 2 (𝐴 ∈ ℂ → (𝐴 · 2) = (𝐴 + 𝐴))
31, 2ax-mp 5 1 (𝐴 · 2) = (𝐴 + 𝐴)
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2167  (class class class)co 5925  cc 7894   + caddc 7899   · cmul 7901  2c2 9058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulcom 7997  ax-mulass 7999  ax-distr 8000  ax-1rid 8003  ax-cnre 8007
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-iota 5220  df-fv 5267  df-ov 5928  df-2 9066
This theorem is referenced by:  3t2e6  9164  4t2e8  9166  6t2e12  9577  7t2e14  9582  8t2e16  9588  9t2e18  9595
  Copyright terms: Public domain W3C validator