| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > times2i | GIF version | ||
| Description: A number times 2. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 2times.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| times2i | ⊢ (𝐴 · 2) = (𝐴 + 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2times.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | times2 9235 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 2) = (𝐴 + 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 · 2) = (𝐴 + 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 (class class class)co 6000 ℂcc 7993 + caddc 7998 · cmul 8000 2c2 9157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulcom 8096 ax-mulass 8098 ax-distr 8099 ax-1rid 8102 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 df-2 9165 |
| This theorem is referenced by: 3t2e6 9263 4t2e8 9265 6t2e12 9677 7t2e14 9682 8t2e16 9688 9t2e18 9695 |
| Copyright terms: Public domain | W3C validator |