ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2timesi Unicode version

Theorem 2timesi 9112
Description: Two times a number. (Contributed by NM, 1-Aug-1999.)
Hypothesis
Ref Expression
2times.1  |-  A  e.  CC
Assertion
Ref Expression
2timesi  |-  ( 2  x.  A )  =  ( A  +  A
)

Proof of Theorem 2timesi
StepHypRef Expression
1 2times.1 . 2  |-  A  e.  CC
2 2times 9110 . 2  |-  ( A  e.  CC  ->  (
2  x.  A )  =  ( A  +  A ) )
31, 2ax-mp 5 1  |-  ( 2  x.  A )  =  ( A  +  A
)
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2164  (class class class)co 5918   CCcc 7870    + caddc 7875    x. cmul 7877   2c2 9033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-resscn 7964  ax-1cn 7965  ax-icn 7967  ax-addcl 7968  ax-mulcl 7970  ax-mulcom 7973  ax-mulass 7975  ax-distr 7976  ax-1rid 7979  ax-cnre 7983
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-ov 5921  df-2 9041
This theorem is referenced by:  2t2e4  9136  nn0le2xi  9290  binom2i  10719  sinq34lt0t  14966  tangtx  14973  ex-dvds  15222
  Copyright terms: Public domain W3C validator