ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txtop Unicode version

Theorem txtop 12620
Description: The product of two topologies is a topology. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
txtop  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( R  tX  S
)  e.  Top )

Proof of Theorem txtop
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2157 . . 3  |-  ran  (
u  e.  R , 
v  e.  S  |->  ( u  X.  v ) )  =  ran  (
u  e.  R , 
v  e.  S  |->  ( u  X.  v ) )
21txval 12615 . 2  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( R  tX  S
)  =  ( topGen ` 
ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) ) ) )
3 topbas 12427 . . . 4  |-  ( R  e.  Top  ->  R  e. 
TopBases )
4 topbas 12427 . . . 4  |-  ( S  e.  Top  ->  S  e. 
TopBases )
51txbas 12618 . . . 4  |-  ( ( R  e.  TopBases  /\  S  e. 
TopBases )  ->  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) )  e.  TopBases )
63, 4, 5syl2an 287 . . 3  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) )  e.  TopBases )
7 tgcl 12424 . . 3  |-  ( ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v
) )  e.  TopBases  -> 
( topGen `  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) ) )  e.  Top )
86, 7syl 14 . 2  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( topGen `  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) ) )  e.  Top )
92, 8eqeltrd 2234 1  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( R  tX  S
)  e.  Top )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2128    X. cxp 4581   ran crn 4584   ` cfv 5167  (class class class)co 5818    e. cmpo 5820   topGenctg 12326   Topctop 12355   TopBasesctb 12400    tX ctx 12612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4252  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-topgen 12332  df-top 12356  df-bases 12401  df-tx 12613
This theorem is referenced by:  txtopi  12621  txtopon  12622  neitx  12628  imasnopn  12659  limccnp2lem  13005  limccnp2cntop  13006
  Copyright terms: Public domain W3C validator