ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txtop Unicode version

Theorem txtop 14580
Description: The product of two topologies is a topology. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
txtop  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( R  tX  S
)  e.  Top )

Proof of Theorem txtop
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . 3  |-  ran  (
u  e.  R , 
v  e.  S  |->  ( u  X.  v ) )  =  ran  (
u  e.  R , 
v  e.  S  |->  ( u  X.  v ) )
21txval 14575 . 2  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( R  tX  S
)  =  ( topGen ` 
ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) ) ) )
3 topbas 14387 . . . 4  |-  ( R  e.  Top  ->  R  e. 
TopBases )
4 topbas 14387 . . . 4  |-  ( S  e.  Top  ->  S  e. 
TopBases )
51txbas 14578 . . . 4  |-  ( ( R  e.  TopBases  /\  S  e. 
TopBases )  ->  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) )  e.  TopBases )
63, 4, 5syl2an 289 . . 3  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) )  e.  TopBases )
7 tgcl 14384 . . 3  |-  ( ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v
) )  e.  TopBases  -> 
( topGen `  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) ) )  e.  Top )
86, 7syl 14 . 2  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( topGen `  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) ) )  e.  Top )
92, 8eqeltrd 2273 1  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( R  tX  S
)  e.  Top )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2167    X. cxp 4662   ran crn 4665   ` cfv 5259  (class class class)co 5925    e. cmpo 5927   topGenctg 12956   Topctop 14317   TopBasesctb 14362    tX ctx 14572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-topgen 12962  df-top 14318  df-bases 14363  df-tx 14573
This theorem is referenced by:  txtopi  14581  txtopon  14582  neitx  14588  imasnopn  14619  limccnp2lem  14996  limccnp2cntop  14997
  Copyright terms: Public domain W3C validator