ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzosplitprm1 Unicode version

Theorem fzosplitprm1 10247
Description: Extending a half-open integer range by an unordered pair at the end. (Contributed by Alexander van der Vekens, 22-Sep-2018.)
Assertion
Ref Expression
fzosplitprm1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  ( A..^ ( B  +  1 ) )  =  ( ( A..^ ( B  -  1 ) )  u.  { ( B  -  1 ) ,  B } ) )

Proof of Theorem fzosplitprm1
StepHypRef Expression
1 simp1 998 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  A  e.  ZZ )
2 simp2 999 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  B  e.  ZZ )
3 zre 9270 . . . . . 6  |-  ( A  e.  ZZ  ->  A  e.  RR )
4 zre 9270 . . . . . 6  |-  ( B  e.  ZZ  ->  B  e.  RR )
5 ltle 8058 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  A  <_  B )
)
63, 4, 5syl2an 289 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  ->  A  <_  B )
)
763impia 1201 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  A  <_  B )
8 eluz2 9547 . . . 4  |-  ( B  e.  ( ZZ>= `  A
)  <->  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <_  B ) )
91, 2, 7, 8syl3anbrc 1182 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  B  e.  ( ZZ>= `  A )
)
10 fzosplitsn 10246 . . 3  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( A..^ ( B  +  1
) )  =  ( ( A..^ B )  u.  { B }
) )
119, 10syl 14 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  ( A..^ ( B  +  1 ) )  =  ( ( A..^ B )  u.  { B }
) )
12 zcn 9271 . . . . . . 7  |-  ( B  e.  ZZ  ->  B  e.  CC )
13 ax-1cn 7917 . . . . . . 7  |-  1  e.  CC
14 npcan 8179 . . . . . . . 8  |-  ( ( B  e.  CC  /\  1  e.  CC )  ->  ( ( B  - 
1 )  +  1 )  =  B )
1514eqcomd 2193 . . . . . . 7  |-  ( ( B  e.  CC  /\  1  e.  CC )  ->  B  =  ( ( B  -  1 )  +  1 ) )
1612, 13, 15sylancl 413 . . . . . 6  |-  ( B  e.  ZZ  ->  B  =  ( ( B  -  1 )  +  1 ) )
17163ad2ant2 1020 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  B  =  ( ( B  -  1 )  +  1 ) )
1817oveq2d 5904 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  ( A..^ B )  =  ( A..^ ( ( B  -  1 )  +  1 ) ) )
19 peano2zm 9304 . . . . . . 7  |-  ( B  e.  ZZ  ->  ( B  -  1 )  e.  ZZ )
20193ad2ant2 1020 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  ( B  -  1 )  e.  ZZ )
21 zltlem1 9323 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  <->  A  <_  ( B  - 
1 ) ) )
2221biimp3a 1355 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  A  <_  ( B  -  1 ) )
23 eluz2 9547 . . . . . 6  |-  ( ( B  -  1 )  e.  ( ZZ>= `  A
)  <->  ( A  e.  ZZ  /\  ( B  -  1 )  e.  ZZ  /\  A  <_ 
( B  -  1 ) ) )
241, 20, 22, 23syl3anbrc 1182 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  ( B  -  1 )  e.  ( ZZ>= `  A
) )
25 fzosplitsn 10246 . . . . 5  |-  ( ( B  -  1 )  e.  ( ZZ>= `  A
)  ->  ( A..^ ( ( B  - 
1 )  +  1 ) )  =  ( ( A..^ ( B  -  1 ) )  u.  { ( B  -  1 ) } ) )
2624, 25syl 14 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  ( A..^ ( ( B  - 
1 )  +  1 ) )  =  ( ( A..^ ( B  -  1 ) )  u.  { ( B  -  1 ) } ) )
2718, 26eqtrd 2220 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  ( A..^ B )  =  ( ( A..^ ( B  -  1 ) )  u.  { ( B  -  1 ) } ) )
2827uneq1d 3300 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  (
( A..^ B )  u.  { B }
)  =  ( ( ( A..^ ( B  -  1 ) )  u.  { ( B  -  1 ) } )  u.  { B } ) )
29 unass 3304 . . 3  |-  ( ( ( A..^ ( B  -  1 ) )  u.  { ( B  -  1 ) } )  u.  { B } )  =  ( ( A..^ ( B  -  1 ) )  u.  ( { ( B  -  1 ) }  u.  { B } ) )
30 df-pr 3611 . . . . . 6  |-  { ( B  -  1 ) ,  B }  =  ( { ( B  - 
1 ) }  u.  { B } )
3130eqcomi 2191 . . . . 5  |-  ( { ( B  -  1 ) }  u.  { B } )  =  {
( B  -  1 ) ,  B }
3231a1i 9 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  ( { ( B  - 
1 ) }  u.  { B } )  =  { ( B  - 
1 ) ,  B } )
3332uneq2d 3301 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  (
( A..^ ( B  -  1 ) )  u.  ( { ( B  -  1 ) }  u.  { B } ) )  =  ( ( A..^ ( B  -  1 ) )  u.  { ( B  -  1 ) ,  B } ) )
3429, 33eqtrid 2232 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  (
( ( A..^ ( B  -  1 ) )  u.  { ( B  -  1 ) } )  u.  { B } )  =  ( ( A..^ ( B  -  1 ) )  u.  { ( B  -  1 ) ,  B } ) )
3511, 28, 343eqtrd 2224 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  ( A..^ ( B  +  1 ) )  =  ( ( A..^ ( B  -  1 ) )  u.  { ( B  -  1 ) ,  B } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 979    = wceq 1363    e. wcel 2158    u. cun 3139   {csn 3604   {cpr 3605   class class class wbr 4015   ` cfv 5228  (class class class)co 5888   CCcc 7822   RRcr 7823   1c1 7825    + caddc 7827    < clt 8005    <_ cle 8006    - cmin 8141   ZZcz 9266   ZZ>=cuz 9541  ..^cfzo 10155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-addcom 7924  ax-addass 7926  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-0id 7932  ax-rnegex 7933  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-inn 8933  df-n0 9190  df-z 9267  df-uz 9542  df-fz 10022  df-fzo 10156
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator