ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unidmrn GIF version

Theorem unidmrn 5027
Description: The double union of the converse of a class is its field. (Contributed by NM, 4-Jun-2008.)
Assertion
Ref Expression
unidmrn 𝐴 = (dom 𝐴 ∪ ran 𝐴)

Proof of Theorem unidmrn
StepHypRef Expression
1 relcnv 4873 . . . 4 Rel 𝐴
2 relfld 5023 . . . 4 (Rel 𝐴 𝐴 = (dom 𝐴 ∪ ran 𝐴))
31, 2ax-mp 7 . . 3 𝐴 = (dom 𝐴 ∪ ran 𝐴)
43equncomi 3186 . 2 𝐴 = (ran 𝐴 ∪ dom 𝐴)
5 dfdm4 4689 . . 3 dom 𝐴 = ran 𝐴
6 df-rn 4508 . . 3 ran 𝐴 = dom 𝐴
75, 6uneq12i 3192 . 2 (dom 𝐴 ∪ ran 𝐴) = (ran 𝐴 ∪ dom 𝐴)
84, 7eqtr4i 2136 1 𝐴 = (dom 𝐴 ∪ ran 𝐴)
Colors of variables: wff set class
Syntax hints:   = wceq 1312  cun 3033   cuni 3700  ccnv 4496  dom cdm 4497  ran crn 4498  Rel wrel 4502
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-v 2657  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-br 3894  df-opab 3948  df-xp 4503  df-rel 4504  df-cnv 4505  df-dm 4507  df-rn 4508
This theorem is referenced by:  relcnvfld  5028  dfdm2  5029
  Copyright terms: Public domain W3C validator