| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unidmrn | GIF version | ||
| Description: The double union of the converse of a class is its field. (Contributed by NM, 4-Jun-2008.) |
| Ref | Expression |
|---|---|
| unidmrn | ⊢ ∪ ∪ ◡𝐴 = (dom 𝐴 ∪ ran 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 5105 | . . . 4 ⊢ Rel ◡𝐴 | |
| 2 | relfld 5256 | . . . 4 ⊢ (Rel ◡𝐴 → ∪ ∪ ◡𝐴 = (dom ◡𝐴 ∪ ran ◡𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ∪ ∪ ◡𝐴 = (dom ◡𝐴 ∪ ran ◡𝐴) |
| 4 | 3 | equncomi 3350 | . 2 ⊢ ∪ ∪ ◡𝐴 = (ran ◡𝐴 ∪ dom ◡𝐴) |
| 5 | dfdm4 4914 | . . 3 ⊢ dom 𝐴 = ran ◡𝐴 | |
| 6 | df-rn 4729 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 7 | 5, 6 | uneq12i 3356 | . 2 ⊢ (dom 𝐴 ∪ ran 𝐴) = (ran ◡𝐴 ∪ dom ◡𝐴) |
| 8 | 4, 7 | eqtr4i 2253 | 1 ⊢ ∪ ∪ ◡𝐴 = (dom 𝐴 ∪ ran 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∪ cun 3195 ∪ cuni 3887 ◡ccnv 4717 dom cdm 4718 ran crn 4719 Rel wrel 4723 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4724 df-rel 4725 df-cnv 4726 df-dm 4728 df-rn 4729 |
| This theorem is referenced by: relcnvfld 5261 dfdm2 5262 |
| Copyright terms: Public domain | W3C validator |