![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unidmrn | GIF version |
Description: The double union of the converse of a class is its field. (Contributed by NM, 4-Jun-2008.) |
Ref | Expression |
---|---|
unidmrn | ⊢ ∪ ∪ ◡𝐴 = (dom 𝐴 ∪ ran 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 4873 | . . . 4 ⊢ Rel ◡𝐴 | |
2 | relfld 5023 | . . . 4 ⊢ (Rel ◡𝐴 → ∪ ∪ ◡𝐴 = (dom ◡𝐴 ∪ ran ◡𝐴)) | |
3 | 1, 2 | ax-mp 7 | . . 3 ⊢ ∪ ∪ ◡𝐴 = (dom ◡𝐴 ∪ ran ◡𝐴) |
4 | 3 | equncomi 3186 | . 2 ⊢ ∪ ∪ ◡𝐴 = (ran ◡𝐴 ∪ dom ◡𝐴) |
5 | dfdm4 4689 | . . 3 ⊢ dom 𝐴 = ran ◡𝐴 | |
6 | df-rn 4508 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
7 | 5, 6 | uneq12i 3192 | . 2 ⊢ (dom 𝐴 ∪ ran 𝐴) = (ran ◡𝐴 ∪ dom ◡𝐴) |
8 | 4, 7 | eqtr4i 2136 | 1 ⊢ ∪ ∪ ◡𝐴 = (dom 𝐴 ∪ ran 𝐴) |
Colors of variables: wff set class |
Syntax hints: = wceq 1312 ∪ cun 3033 ∪ cuni 3700 ◡ccnv 4496 dom cdm 4497 ran crn 4498 Rel wrel 4502 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-pow 4056 ax-pr 4089 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ral 2393 df-rex 2394 df-v 2657 df-un 3039 df-in 3041 df-ss 3048 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-br 3894 df-opab 3948 df-xp 4503 df-rel 4504 df-cnv 4505 df-dm 4507 df-rn 4508 |
This theorem is referenced by: relcnvfld 5028 dfdm2 5029 |
Copyright terms: Public domain | W3C validator |