Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unidmrn | GIF version |
Description: The double union of the converse of a class is its field. (Contributed by NM, 4-Jun-2008.) |
Ref | Expression |
---|---|
unidmrn | ⊢ ∪ ∪ ◡𝐴 = (dom 𝐴 ∪ ran 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 4982 | . . . 4 ⊢ Rel ◡𝐴 | |
2 | relfld 5132 | . . . 4 ⊢ (Rel ◡𝐴 → ∪ ∪ ◡𝐴 = (dom ◡𝐴 ∪ ran ◡𝐴)) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ∪ ∪ ◡𝐴 = (dom ◡𝐴 ∪ ran ◡𝐴) |
4 | 3 | equncomi 3268 | . 2 ⊢ ∪ ∪ ◡𝐴 = (ran ◡𝐴 ∪ dom ◡𝐴) |
5 | dfdm4 4796 | . . 3 ⊢ dom 𝐴 = ran ◡𝐴 | |
6 | df-rn 4615 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
7 | 5, 6 | uneq12i 3274 | . 2 ⊢ (dom 𝐴 ∪ ran 𝐴) = (ran ◡𝐴 ∪ dom ◡𝐴) |
8 | 4, 7 | eqtr4i 2189 | 1 ⊢ ∪ ∪ ◡𝐴 = (dom 𝐴 ∪ ran 𝐴) |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∪ cun 3114 ∪ cuni 3789 ◡ccnv 4603 dom cdm 4604 ran crn 4605 Rel wrel 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 df-dm 4614 df-rn 4615 |
This theorem is referenced by: relcnvfld 5137 dfdm2 5138 |
Copyright terms: Public domain | W3C validator |