ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unidmrn GIF version

Theorem unidmrn 5202
Description: The double union of the converse of a class is its field. (Contributed by NM, 4-Jun-2008.)
Assertion
Ref Expression
unidmrn 𝐴 = (dom 𝐴 ∪ ran 𝐴)

Proof of Theorem unidmrn
StepHypRef Expression
1 relcnv 5047 . . . 4 Rel 𝐴
2 relfld 5198 . . . 4 (Rel 𝐴 𝐴 = (dom 𝐴 ∪ ran 𝐴))
31, 2ax-mp 5 . . 3 𝐴 = (dom 𝐴 ∪ ran 𝐴)
43equncomi 3309 . 2 𝐴 = (ran 𝐴 ∪ dom 𝐴)
5 dfdm4 4858 . . 3 dom 𝐴 = ran 𝐴
6 df-rn 4674 . . 3 ran 𝐴 = dom 𝐴
75, 6uneq12i 3315 . 2 (dom 𝐴 ∪ ran 𝐴) = (ran 𝐴 ∪ dom 𝐴)
84, 7eqtr4i 2220 1 𝐴 = (dom 𝐴 ∪ ran 𝐴)
Colors of variables: wff set class
Syntax hints:   = wceq 1364  cun 3155   cuni 3839  ccnv 4662  dom cdm 4663  ran crn 4664  Rel wrel 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-cnv 4671  df-dm 4673  df-rn 4674
This theorem is referenced by:  relcnvfld  5203  dfdm2  5204
  Copyright terms: Public domain W3C validator