| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpima1 | GIF version | ||
| Description: The image by a cross product. (Contributed by Thierry Arnoux, 16-Dec-2017.) |
| Ref | Expression |
|---|---|
| xpima1 | ⊢ ((𝐴 ∩ 𝐶) = ∅ → ((𝐴 × 𝐵) “ 𝐶) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 4696 | . . 3 ⊢ ((𝐴 × 𝐵) “ 𝐶) = ran ((𝐴 × 𝐵) ↾ 𝐶) | |
| 2 | df-res 4695 | . . . 4 ⊢ ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐴 × 𝐵) ∩ (𝐶 × V)) | |
| 3 | 2 | rneqi 4915 | . . 3 ⊢ ran ((𝐴 × 𝐵) ↾ 𝐶) = ran ((𝐴 × 𝐵) ∩ (𝐶 × V)) |
| 4 | inxp 4820 | . . . 4 ⊢ ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) | |
| 5 | 4 | rneqi 4915 | . . 3 ⊢ ran ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ran ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) |
| 6 | 1, 3, 5 | 3eqtri 2231 | . 2 ⊢ ((𝐴 × 𝐵) “ 𝐶) = ran ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) |
| 7 | xpeq1 4697 | . . . 4 ⊢ ((𝐴 ∩ 𝐶) = ∅ → ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) = (∅ × (𝐵 ∩ V))) | |
| 8 | 0xp 4763 | . . . 4 ⊢ (∅ × (𝐵 ∩ V)) = ∅ | |
| 9 | 7, 8 | eqtrdi 2255 | . . 3 ⊢ ((𝐴 ∩ 𝐶) = ∅ → ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) = ∅) |
| 10 | rneq 4914 | . . . 4 ⊢ (((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) = ∅ → ran ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) = ran ∅) | |
| 11 | rn0 4943 | . . . 4 ⊢ ran ∅ = ∅ | |
| 12 | 10, 11 | eqtrdi 2255 | . . 3 ⊢ (((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) = ∅ → ran ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) = ∅) |
| 13 | 9, 12 | syl 14 | . 2 ⊢ ((𝐴 ∩ 𝐶) = ∅ → ran ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) = ∅) |
| 14 | 6, 13 | eqtrid 2251 | 1 ⊢ ((𝐴 ∩ 𝐶) = ∅ → ((𝐴 × 𝐵) “ 𝐶) = ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 Vcvv 2773 ∩ cin 3169 ∅c0 3464 × cxp 4681 ran crn 4684 ↾ cres 4685 “ cima 4686 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-opab 4114 df-xp 4689 df-rel 4690 df-cnv 4691 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |