| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpima1 | GIF version | ||
| Description: The image by a cross product. (Contributed by Thierry Arnoux, 16-Dec-2017.) |
| Ref | Expression |
|---|---|
| xpima1 | ⊢ ((𝐴 ∩ 𝐶) = ∅ → ((𝐴 × 𝐵) “ 𝐶) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 4731 | . . 3 ⊢ ((𝐴 × 𝐵) “ 𝐶) = ran ((𝐴 × 𝐵) ↾ 𝐶) | |
| 2 | df-res 4730 | . . . 4 ⊢ ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐴 × 𝐵) ∩ (𝐶 × V)) | |
| 3 | 2 | rneqi 4951 | . . 3 ⊢ ran ((𝐴 × 𝐵) ↾ 𝐶) = ran ((𝐴 × 𝐵) ∩ (𝐶 × V)) |
| 4 | inxp 4855 | . . . 4 ⊢ ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) | |
| 5 | 4 | rneqi 4951 | . . 3 ⊢ ran ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ran ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) |
| 6 | 1, 3, 5 | 3eqtri 2254 | . 2 ⊢ ((𝐴 × 𝐵) “ 𝐶) = ran ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) |
| 7 | xpeq1 4732 | . . . 4 ⊢ ((𝐴 ∩ 𝐶) = ∅ → ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) = (∅ × (𝐵 ∩ V))) | |
| 8 | 0xp 4798 | . . . 4 ⊢ (∅ × (𝐵 ∩ V)) = ∅ | |
| 9 | 7, 8 | eqtrdi 2278 | . . 3 ⊢ ((𝐴 ∩ 𝐶) = ∅ → ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) = ∅) |
| 10 | rneq 4950 | . . . 4 ⊢ (((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) = ∅ → ran ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) = ran ∅) | |
| 11 | rn0 4979 | . . . 4 ⊢ ran ∅ = ∅ | |
| 12 | 10, 11 | eqtrdi 2278 | . . 3 ⊢ (((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) = ∅ → ran ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) = ∅) |
| 13 | 9, 12 | syl 14 | . 2 ⊢ ((𝐴 ∩ 𝐶) = ∅ → ran ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) = ∅) |
| 14 | 6, 13 | eqtrid 2274 | 1 ⊢ ((𝐴 ∩ 𝐶) = ∅ → ((𝐴 × 𝐵) “ 𝐶) = ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 Vcvv 2799 ∩ cin 3196 ∅c0 3491 × cxp 4716 ran crn 4719 ↾ cres 4720 “ cima 4721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4724 df-rel 4725 df-cnv 4726 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |