ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpima1 GIF version

Theorem xpima1 5112
Description: The image by a cross product. (Contributed by Thierry Arnoux, 16-Dec-2017.)
Assertion
Ref Expression
xpima1 ((𝐴𝐶) = ∅ → ((𝐴 × 𝐵) “ 𝐶) = ∅)

Proof of Theorem xpima1
StepHypRef Expression
1 df-ima 4672 . . 3 ((𝐴 × 𝐵) “ 𝐶) = ran ((𝐴 × 𝐵) ↾ 𝐶)
2 df-res 4671 . . . 4 ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐴 × 𝐵) ∩ (𝐶 × V))
32rneqi 4890 . . 3 ran ((𝐴 × 𝐵) ↾ 𝐶) = ran ((𝐴 × 𝐵) ∩ (𝐶 × V))
4 inxp 4796 . . . 4 ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ((𝐴𝐶) × (𝐵 ∩ V))
54rneqi 4890 . . 3 ran ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ran ((𝐴𝐶) × (𝐵 ∩ V))
61, 3, 53eqtri 2218 . 2 ((𝐴 × 𝐵) “ 𝐶) = ran ((𝐴𝐶) × (𝐵 ∩ V))
7 xpeq1 4673 . . . 4 ((𝐴𝐶) = ∅ → ((𝐴𝐶) × (𝐵 ∩ V)) = (∅ × (𝐵 ∩ V)))
8 0xp 4739 . . . 4 (∅ × (𝐵 ∩ V)) = ∅
97, 8eqtrdi 2242 . . 3 ((𝐴𝐶) = ∅ → ((𝐴𝐶) × (𝐵 ∩ V)) = ∅)
10 rneq 4889 . . . 4 (((𝐴𝐶) × (𝐵 ∩ V)) = ∅ → ran ((𝐴𝐶) × (𝐵 ∩ V)) = ran ∅)
11 rn0 4918 . . . 4 ran ∅ = ∅
1210, 11eqtrdi 2242 . . 3 (((𝐴𝐶) × (𝐵 ∩ V)) = ∅ → ran ((𝐴𝐶) × (𝐵 ∩ V)) = ∅)
139, 12syl 14 . 2 ((𝐴𝐶) = ∅ → ran ((𝐴𝐶) × (𝐵 ∩ V)) = ∅)
146, 13eqtrid 2238 1 ((𝐴𝐶) = ∅ → ((𝐴 × 𝐵) “ 𝐶) = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  Vcvv 2760  cin 3152  c0 3446   × cxp 4657  ran crn 4660  cres 4661  cima 4662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator