ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpima1 GIF version

Theorem xpima1 5116
Description: The image by a cross product. (Contributed by Thierry Arnoux, 16-Dec-2017.)
Assertion
Ref Expression
xpima1 ((𝐴𝐶) = ∅ → ((𝐴 × 𝐵) “ 𝐶) = ∅)

Proof of Theorem xpima1
StepHypRef Expression
1 df-ima 4676 . . 3 ((𝐴 × 𝐵) “ 𝐶) = ran ((𝐴 × 𝐵) ↾ 𝐶)
2 df-res 4675 . . . 4 ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐴 × 𝐵) ∩ (𝐶 × V))
32rneqi 4894 . . 3 ran ((𝐴 × 𝐵) ↾ 𝐶) = ran ((𝐴 × 𝐵) ∩ (𝐶 × V))
4 inxp 4800 . . . 4 ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ((𝐴𝐶) × (𝐵 ∩ V))
54rneqi 4894 . . 3 ran ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ran ((𝐴𝐶) × (𝐵 ∩ V))
61, 3, 53eqtri 2221 . 2 ((𝐴 × 𝐵) “ 𝐶) = ran ((𝐴𝐶) × (𝐵 ∩ V))
7 xpeq1 4677 . . . 4 ((𝐴𝐶) = ∅ → ((𝐴𝐶) × (𝐵 ∩ V)) = (∅ × (𝐵 ∩ V)))
8 0xp 4743 . . . 4 (∅ × (𝐵 ∩ V)) = ∅
97, 8eqtrdi 2245 . . 3 ((𝐴𝐶) = ∅ → ((𝐴𝐶) × (𝐵 ∩ V)) = ∅)
10 rneq 4893 . . . 4 (((𝐴𝐶) × (𝐵 ∩ V)) = ∅ → ran ((𝐴𝐶) × (𝐵 ∩ V)) = ran ∅)
11 rn0 4922 . . . 4 ran ∅ = ∅
1210, 11eqtrdi 2245 . . 3 (((𝐴𝐶) × (𝐵 ∩ V)) = ∅ → ran ((𝐴𝐶) × (𝐵 ∩ V)) = ∅)
139, 12syl 14 . 2 ((𝐴𝐶) = ∅ → ran ((𝐴𝐶) × (𝐵 ∩ V)) = ∅)
146, 13eqtrid 2241 1 ((𝐴𝐶) = ∅ → ((𝐴 × 𝐵) “ 𝐶) = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  Vcvv 2763  cin 3156  c0 3450   × cxp 4661  ran crn 4664  cres 4665  cima 4666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-cnv 4671  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator