Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xpima1 | GIF version |
Description: The image by a cross product. (Contributed by Thierry Arnoux, 16-Dec-2017.) |
Ref | Expression |
---|---|
xpima1 | ⊢ ((𝐴 ∩ 𝐶) = ∅ → ((𝐴 × 𝐵) “ 𝐶) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 4633 | . . 3 ⊢ ((𝐴 × 𝐵) “ 𝐶) = ran ((𝐴 × 𝐵) ↾ 𝐶) | |
2 | df-res 4632 | . . . 4 ⊢ ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐴 × 𝐵) ∩ (𝐶 × V)) | |
3 | 2 | rneqi 4848 | . . 3 ⊢ ran ((𝐴 × 𝐵) ↾ 𝐶) = ran ((𝐴 × 𝐵) ∩ (𝐶 × V)) |
4 | inxp 4754 | . . . 4 ⊢ ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) | |
5 | 4 | rneqi 4848 | . . 3 ⊢ ran ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ran ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) |
6 | 1, 3, 5 | 3eqtri 2200 | . 2 ⊢ ((𝐴 × 𝐵) “ 𝐶) = ran ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) |
7 | xpeq1 4634 | . . . 4 ⊢ ((𝐴 ∩ 𝐶) = ∅ → ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) = (∅ × (𝐵 ∩ V))) | |
8 | 0xp 4700 | . . . 4 ⊢ (∅ × (𝐵 ∩ V)) = ∅ | |
9 | 7, 8 | eqtrdi 2224 | . . 3 ⊢ ((𝐴 ∩ 𝐶) = ∅ → ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) = ∅) |
10 | rneq 4847 | . . . 4 ⊢ (((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) = ∅ → ran ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) = ran ∅) | |
11 | rn0 4876 | . . . 4 ⊢ ran ∅ = ∅ | |
12 | 10, 11 | eqtrdi 2224 | . . 3 ⊢ (((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) = ∅ → ran ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) = ∅) |
13 | 9, 12 | syl 14 | . 2 ⊢ ((𝐴 ∩ 𝐶) = ∅ → ran ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) = ∅) |
14 | 6, 13 | eqtrid 2220 | 1 ⊢ ((𝐴 ∩ 𝐶) = ∅ → ((𝐴 × 𝐵) “ 𝐶) = ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 Vcvv 2735 ∩ cin 3126 ∅c0 3420 × cxp 4618 ran crn 4621 ↾ cres 4622 “ cima 4623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-xp 4626 df-rel 4627 df-cnv 4628 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |