Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xpima1 | GIF version |
Description: The image by a cross product. (Contributed by Thierry Arnoux, 16-Dec-2017.) |
Ref | Expression |
---|---|
xpima1 | ⊢ ((𝐴 ∩ 𝐶) = ∅ → ((𝐴 × 𝐵) “ 𝐶) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 4617 | . . 3 ⊢ ((𝐴 × 𝐵) “ 𝐶) = ran ((𝐴 × 𝐵) ↾ 𝐶) | |
2 | df-res 4616 | . . . 4 ⊢ ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐴 × 𝐵) ∩ (𝐶 × V)) | |
3 | 2 | rneqi 4832 | . . 3 ⊢ ran ((𝐴 × 𝐵) ↾ 𝐶) = ran ((𝐴 × 𝐵) ∩ (𝐶 × V)) |
4 | inxp 4738 | . . . 4 ⊢ ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) | |
5 | 4 | rneqi 4832 | . . 3 ⊢ ran ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ran ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) |
6 | 1, 3, 5 | 3eqtri 2190 | . 2 ⊢ ((𝐴 × 𝐵) “ 𝐶) = ran ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) |
7 | xpeq1 4618 | . . . 4 ⊢ ((𝐴 ∩ 𝐶) = ∅ → ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) = (∅ × (𝐵 ∩ V))) | |
8 | 0xp 4684 | . . . 4 ⊢ (∅ × (𝐵 ∩ V)) = ∅ | |
9 | 7, 8 | eqtrdi 2215 | . . 3 ⊢ ((𝐴 ∩ 𝐶) = ∅ → ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) = ∅) |
10 | rneq 4831 | . . . 4 ⊢ (((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) = ∅ → ran ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) = ran ∅) | |
11 | rn0 4860 | . . . 4 ⊢ ran ∅ = ∅ | |
12 | 10, 11 | eqtrdi 2215 | . . 3 ⊢ (((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) = ∅ → ran ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) = ∅) |
13 | 9, 12 | syl 14 | . 2 ⊢ ((𝐴 ∩ 𝐶) = ∅ → ran ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) = ∅) |
14 | 6, 13 | syl5eq 2211 | 1 ⊢ ((𝐴 ∩ 𝐶) = ∅ → ((𝐴 × 𝐵) “ 𝐶) = ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 Vcvv 2726 ∩ cin 3115 ∅c0 3409 × cxp 4602 ran crn 4605 ↾ cres 4606 “ cima 4607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |