ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrletrid Unicode version

Theorem xrletrid 9926
Description: Trichotomy law for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
xrletrid.1  |-  ( ph  ->  A  e.  RR* )
xrletrid.2  |-  ( ph  ->  B  e.  RR* )
xrletrid.3  |-  ( ph  ->  A  <_  B )
xrletrid.4  |-  ( ph  ->  B  <_  A )
Assertion
Ref Expression
xrletrid  |-  ( ph  ->  A  =  B )

Proof of Theorem xrletrid
StepHypRef Expression
1 xrletrid.3 . 2  |-  ( ph  ->  A  <_  B )
2 xrletrid.4 . 2  |-  ( ph  ->  B  <_  A )
3 xrletrid.1 . . 3  |-  ( ph  ->  A  e.  RR* )
4 xrletrid.2 . . 3  |-  ( ph  ->  B  e.  RR* )
5 xrletri3 9925 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  =  B  <->  ( A  <_  B  /\  B  <_  A ) ) )
63, 4, 5syl2anc 411 . 2  |-  ( ph  ->  ( A  =  B  <-> 
( A  <_  B  /\  B  <_  A ) ) )
71, 2, 6mpbir2and 946 1  |-  ( ph  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175   class class class wbr 4043   RR*cxr 8105    <_ cle 8107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-pre-ltirr 8036  ax-pre-apti 8039
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-xp 4680  df-cnv 4682  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112
This theorem is referenced by:  pcadd2  12635
  Copyright terms: Public domain W3C validator