ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrletrid Unicode version

Theorem xrletrid 9962
Description: Trichotomy law for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
xrletrid.1  |-  ( ph  ->  A  e.  RR* )
xrletrid.2  |-  ( ph  ->  B  e.  RR* )
xrletrid.3  |-  ( ph  ->  A  <_  B )
xrletrid.4  |-  ( ph  ->  B  <_  A )
Assertion
Ref Expression
xrletrid  |-  ( ph  ->  A  =  B )

Proof of Theorem xrletrid
StepHypRef Expression
1 xrletrid.3 . 2  |-  ( ph  ->  A  <_  B )
2 xrletrid.4 . 2  |-  ( ph  ->  B  <_  A )
3 xrletrid.1 . . 3  |-  ( ph  ->  A  e.  RR* )
4 xrletrid.2 . . 3  |-  ( ph  ->  B  e.  RR* )
5 xrletri3 9961 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  =  B  <->  ( A  <_  B  /\  B  <_  A ) ) )
63, 4, 5syl2anc 411 . 2  |-  ( ph  ->  ( A  =  B  <-> 
( A  <_  B  /\  B  <_  A ) ) )
71, 2, 6mpbir2and 947 1  |-  ( ph  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   class class class wbr 4059   RR*cxr 8141    <_ cle 8143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-pre-ltirr 8072  ax-pre-apti 8075
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-xp 4699  df-cnv 4701  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148
This theorem is referenced by:  pcadd2  12779
  Copyright terms: Public domain W3C validator