ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcadd2 Unicode version

Theorem pcadd2 12535
Description: The inequality of pcadd 12534 becomes an equality when one of the factors has prime count strictly less than the other. (Contributed by Mario Carneiro, 16-Jan-2015.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
pcadd2.1  |-  ( ph  ->  P  e.  Prime )
pcadd2.2  |-  ( ph  ->  A  e.  QQ )
pcadd2.3  |-  ( ph  ->  B  e.  QQ )
pcadd2.4  |-  ( ph  ->  ( P  pCnt  A
)  <  ( P  pCnt  B ) )
Assertion
Ref Expression
pcadd2  |-  ( ph  ->  ( P  pCnt  A
)  =  ( P 
pCnt  ( A  +  B ) ) )

Proof of Theorem pcadd2
StepHypRef Expression
1 pcadd2.1 . . 3  |-  ( ph  ->  P  e.  Prime )
2 pcadd2.2 . . 3  |-  ( ph  ->  A  e.  QQ )
3 pcxcl 12505 . . 3  |-  ( ( P  e.  Prime  /\  A  e.  QQ )  ->  ( P  pCnt  A )  e. 
RR* )
41, 2, 3syl2anc 411 . 2  |-  ( ph  ->  ( P  pCnt  A
)  e.  RR* )
5 pcadd2.3 . . . 4  |-  ( ph  ->  B  e.  QQ )
6 qaddcl 9726 . . . 4  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  +  B
)  e.  QQ )
72, 5, 6syl2anc 411 . . 3  |-  ( ph  ->  ( A  +  B
)  e.  QQ )
8 pcxcl 12505 . . 3  |-  ( ( P  e.  Prime  /\  ( A  +  B )  e.  QQ )  ->  ( P  pCnt  ( A  +  B ) )  e. 
RR* )
91, 7, 8syl2anc 411 . 2  |-  ( ph  ->  ( P  pCnt  ( A  +  B )
)  e.  RR* )
10 pcxcl 12505 . . . . 5  |-  ( ( P  e.  Prime  /\  B  e.  QQ )  ->  ( P  pCnt  B )  e. 
RR* )
111, 5, 10syl2anc 411 . . . 4  |-  ( ph  ->  ( P  pCnt  B
)  e.  RR* )
12 pcadd2.4 . . . 4  |-  ( ph  ->  ( P  pCnt  A
)  <  ( P  pCnt  B ) )
134, 11, 12xrltled 9891 . . 3  |-  ( ph  ->  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )
141, 2, 5, 13pcadd 12534 . 2  |-  ( ph  ->  ( P  pCnt  A
)  <_  ( P  pCnt  ( A  +  B
) ) )
15 qnegcl 9727 . . . . 5  |-  ( B  e.  QQ  ->  -u B  e.  QQ )
165, 15syl 14 . . . 4  |-  ( ph  -> 
-u B  e.  QQ )
17 pcxqcl 12506 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  A  e.  QQ )  ->  (
( P  pCnt  A
)  e.  ZZ  \/  ( P  pCnt  A )  = +oo ) )
18 zq 9717 . . . . . . . . . . . . 13  |-  ( ( P  pCnt  A )  e.  ZZ  ->  ( P  pCnt  A )  e.  QQ )
1918orim1i 761 . . . . . . . . . . . 12  |-  ( ( ( P  pCnt  A
)  e.  ZZ  \/  ( P  pCnt  A )  = +oo )  -> 
( ( P  pCnt  A )  e.  QQ  \/  ( P  pCnt  A )  = +oo ) )
2017, 19syl 14 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  A  e.  QQ )  ->  (
( P  pCnt  A
)  e.  QQ  \/  ( P  pCnt  A )  = +oo ) )
211, 2, 20syl2anc 411 . . . . . . . . . 10  |-  ( ph  ->  ( ( P  pCnt  A )  e.  QQ  \/  ( P  pCnt  A )  = +oo ) )
22 pcxqcl 12506 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  B  e.  QQ )  ->  (
( P  pCnt  B
)  e.  ZZ  \/  ( P  pCnt  B )  = +oo ) )
23 zq 9717 . . . . . . . . . . . . 13  |-  ( ( P  pCnt  B )  e.  ZZ  ->  ( P  pCnt  B )  e.  QQ )
2423orim1i 761 . . . . . . . . . . . 12  |-  ( ( ( P  pCnt  B
)  e.  ZZ  \/  ( P  pCnt  B )  = +oo )  -> 
( ( P  pCnt  B )  e.  QQ  \/  ( P  pCnt  B )  = +oo ) )
2522, 24syl 14 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  B  e.  QQ )  ->  (
( P  pCnt  B
)  e.  QQ  \/  ( P  pCnt  B )  = +oo ) )
261, 5, 25syl2anc 411 . . . . . . . . . 10  |-  ( ph  ->  ( ( P  pCnt  B )  e.  QQ  \/  ( P  pCnt  B )  = +oo ) )
27 xqltnle 10374 . . . . . . . . . 10  |-  ( ( ( ( P  pCnt  A )  e.  QQ  \/  ( P  pCnt  A )  = +oo )  /\  ( ( P  pCnt  B )  e.  QQ  \/  ( P  pCnt  B )  = +oo ) )  ->  ( ( P 
pCnt  A )  <  ( P  pCnt  B )  <->  -.  ( P  pCnt  B )  <_ 
( P  pCnt  A
) ) )
2821, 26, 27syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( ( P  pCnt  A )  <  ( P 
pCnt  B )  <->  -.  ( P  pCnt  B )  <_ 
( P  pCnt  A
) ) )
2912, 28mpbid 147 . . . . . . . 8  |-  ( ph  ->  -.  ( P  pCnt  B )  <_  ( P  pCnt  A ) )
301adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  ( P  pCnt  B )  <_  ( P  pCnt  ( A  +  B ) ) )  ->  P  e.  Prime )
3116adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  ( P  pCnt  B )  <_  ( P  pCnt  ( A  +  B ) ) )  ->  -u B  e.  QQ )
327adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  ( P  pCnt  B )  <_  ( P  pCnt  ( A  +  B ) ) )  ->  ( A  +  B )  e.  QQ )
33 pcneg 12519 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  B  e.  QQ )  ->  ( P  pCnt  -u B )  =  ( P  pCnt  B
) )
341, 5, 33syl2anc 411 . . . . . . . . . . . . 13  |-  ( ph  ->  ( P  pCnt  -u B
)  =  ( P 
pCnt  B ) )
3534breq1d 4044 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( P  pCnt  -u B )  <_  ( P  pCnt  ( A  +  B ) )  <->  ( P  pCnt  B )  <_  ( P  pCnt  ( A  +  B ) ) ) )
3635biimpar 297 . . . . . . . . . . 11  |-  ( (
ph  /\  ( P  pCnt  B )  <_  ( P  pCnt  ( A  +  B ) ) )  ->  ( P  pCnt  -u B )  <_  ( P  pCnt  ( A  +  B ) ) )
3730, 31, 32, 36pcadd 12534 . . . . . . . . . 10  |-  ( (
ph  /\  ( P  pCnt  B )  <_  ( P  pCnt  ( A  +  B ) ) )  ->  ( P  pCnt  -u B )  <_  ( P  pCnt  ( -u B  +  ( A  +  B ) ) ) )
3837ex 115 . . . . . . . . 9  |-  ( ph  ->  ( ( P  pCnt  B )  <_  ( P  pCnt  ( A  +  B
) )  ->  ( P  pCnt  -u B )  <_ 
( P  pCnt  ( -u B  +  ( A  +  B ) ) ) ) )
39 qcn 9725 . . . . . . . . . . . . . . 15  |-  ( B  e.  QQ  ->  B  e.  CC )
405, 39syl 14 . . . . . . . . . . . . . 14  |-  ( ph  ->  B  e.  CC )
4140negcld 8341 . . . . . . . . . . . . 13  |-  ( ph  -> 
-u B  e.  CC )
42 qcn 9725 . . . . . . . . . . . . . 14  |-  ( A  e.  QQ  ->  A  e.  CC )
432, 42syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  A  e.  CC )
4441, 43, 40add12d 8210 . . . . . . . . . . . 12  |-  ( ph  ->  ( -u B  +  ( A  +  B
) )  =  ( A  +  ( -u B  +  B )
) )
4541, 40addcomd 8194 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( -u B  +  B )  =  ( B  +  -u B
) )
4640negidd 8344 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( B  +  -u B )  =  0 )
4745, 46eqtrd 2229 . . . . . . . . . . . . 13  |-  ( ph  ->  ( -u B  +  B )  =  0 )
4847oveq2d 5941 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  +  (
-u B  +  B
) )  =  ( A  +  0 ) )
4943addridd 8192 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  +  0 )  =  A )
5044, 48, 493eqtrd 2233 . . . . . . . . . . 11  |-  ( ph  ->  ( -u B  +  ( A  +  B
) )  =  A )
5150oveq2d 5941 . . . . . . . . . 10  |-  ( ph  ->  ( P  pCnt  ( -u B  +  ( A  +  B ) ) )  =  ( P 
pCnt  A ) )
5234, 51breq12d 4047 . . . . . . . . 9  |-  ( ph  ->  ( ( P  pCnt  -u B )  <_  ( P  pCnt  ( -u B  +  ( A  +  B ) ) )  <-> 
( P  pCnt  B
)  <_  ( P  pCnt  A ) ) )
5338, 52sylibd 149 . . . . . . . 8  |-  ( ph  ->  ( ( P  pCnt  B )  <_  ( P  pCnt  ( A  +  B
) )  ->  ( P  pCnt  B )  <_ 
( P  pCnt  A
) ) )
5429, 53mtod 664 . . . . . . 7  |-  ( ph  ->  -.  ( P  pCnt  B )  <_  ( P  pCnt  ( A  +  B
) ) )
55 pcxqcl 12506 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  ( A  +  B )  e.  QQ )  ->  (
( P  pCnt  ( A  +  B )
)  e.  ZZ  \/  ( P  pCnt  ( A  +  B ) )  = +oo ) )
56 zq 9717 . . . . . . . . . . 11  |-  ( ( P  pCnt  ( A  +  B ) )  e.  ZZ  ->  ( P  pCnt  ( A  +  B
) )  e.  QQ )
5756orim1i 761 . . . . . . . . . 10  |-  ( ( ( P  pCnt  ( A  +  B )
)  e.  ZZ  \/  ( P  pCnt  ( A  +  B ) )  = +oo )  -> 
( ( P  pCnt  ( A  +  B ) )  e.  QQ  \/  ( P  pCnt  ( A  +  B ) )  = +oo ) )
5855, 57syl 14 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( A  +  B )  e.  QQ )  ->  (
( P  pCnt  ( A  +  B )
)  e.  QQ  \/  ( P  pCnt  ( A  +  B ) )  = +oo ) )
591, 7, 58syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( ( P  pCnt  ( A  +  B ) )  e.  QQ  \/  ( P  pCnt  ( A  +  B ) )  = +oo ) )
60 xqltnle 10374 . . . . . . . 8  |-  ( ( ( ( P  pCnt  ( A  +  B ) )  e.  QQ  \/  ( P  pCnt  ( A  +  B ) )  = +oo )  /\  ( ( P  pCnt  B )  e.  QQ  \/  ( P  pCnt  B )  = +oo ) )  ->  ( ( P 
pCnt  ( A  +  B ) )  < 
( P  pCnt  B
)  <->  -.  ( P  pCnt  B )  <_  ( P  pCnt  ( A  +  B ) ) ) )
6159, 26, 60syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( ( P  pCnt  ( A  +  B ) )  <  ( P 
pCnt  B )  <->  -.  ( P  pCnt  B )  <_ 
( P  pCnt  ( A  +  B )
) ) )
6254, 61mpbird 167 . . . . . 6  |-  ( ph  ->  ( P  pCnt  ( A  +  B )
)  <  ( P  pCnt  B ) )
639, 11, 62xrltled 9891 . . . . 5  |-  ( ph  ->  ( P  pCnt  ( A  +  B )
)  <_  ( P  pCnt  B ) )
6463, 34breqtrrd 4062 . . . 4  |-  ( ph  ->  ( P  pCnt  ( A  +  B )
)  <_  ( P  pCnt  -u B ) )
651, 7, 16, 64pcadd 12534 . . 3  |-  ( ph  ->  ( P  pCnt  ( A  +  B )
)  <_  ( P  pCnt  ( ( A  +  B )  +  -u B ) ) )
6643, 40, 41addassd 8066 . . . . 5  |-  ( ph  ->  ( ( A  +  B )  +  -u B )  =  ( A  +  ( B  +  -u B ) ) )
6746oveq2d 5941 . . . . 5  |-  ( ph  ->  ( A  +  ( B  +  -u B
) )  =  ( A  +  0 ) )
6866, 67, 493eqtrd 2233 . . . 4  |-  ( ph  ->  ( ( A  +  B )  +  -u B )  =  A )
6968oveq2d 5941 . . 3  |-  ( ph  ->  ( P  pCnt  (
( A  +  B
)  +  -u B
) )  =  ( P  pCnt  A )
)
7065, 69breqtrd 4060 . 2  |-  ( ph  ->  ( P  pCnt  ( A  +  B )
)  <_  ( P  pCnt  A ) )
714, 9, 14, 70xrletrid 9897 1  |-  ( ph  ->  ( P  pCnt  A
)  =  ( P 
pCnt  ( A  +  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2167   class class class wbr 4034  (class class class)co 5925   CCcc 7894   0cc0 7896    + caddc 7899   +oocpnf 8075   RR*cxr 8077    < clt 8078    <_ cle 8079   -ucneg 8215   ZZcz 9343   QQcq 9710   Primecprime 12300    pCnt cpc 12478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-2o 6484  df-er 6601  df-en 6809  df-sup 7059  df-inf 7060  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-fl 10377  df-mod 10432  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-dvds 11970  df-gcd 12146  df-prm 12301  df-pc 12479
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator