ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrletrid GIF version

Theorem xrletrid 9989
Description: Trichotomy law for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
xrletrid.1 (𝜑𝐴 ∈ ℝ*)
xrletrid.2 (𝜑𝐵 ∈ ℝ*)
xrletrid.3 (𝜑𝐴𝐵)
xrletrid.4 (𝜑𝐵𝐴)
Assertion
Ref Expression
xrletrid (𝜑𝐴 = 𝐵)

Proof of Theorem xrletrid
StepHypRef Expression
1 xrletrid.3 . 2 (𝜑𝐴𝐵)
2 xrletrid.4 . 2 (𝜑𝐵𝐴)
3 xrletrid.1 . . 3 (𝜑𝐴 ∈ ℝ*)
4 xrletrid.2 . . 3 (𝜑𝐵 ∈ ℝ*)
5 xrletri3 9988 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
63, 4, 5syl2anc 411 . 2 (𝜑 → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
71, 2, 6mpbir2and 950 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200   class class class wbr 4082  *cxr 8168  cle 8170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-pre-ltirr 8099  ax-pre-apti 8102
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4722  df-cnv 4724  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175
This theorem is referenced by:  pcadd2  12850
  Copyright terms: Public domain W3C validator