![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > numaddc | GIF version |
Description: Add two decimal integers 𝑀 and 𝑁 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
numma.1 | ⊢ 𝑇 ∈ ℕ0 |
numma.2 | ⊢ 𝐴 ∈ ℕ0 |
numma.3 | ⊢ 𝐵 ∈ ℕ0 |
numma.4 | ⊢ 𝐶 ∈ ℕ0 |
numma.5 | ⊢ 𝐷 ∈ ℕ0 |
numma.6 | ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) |
numma.7 | ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) |
numaddc.8 | ⊢ 𝐹 ∈ ℕ0 |
numaddc.9 | ⊢ ((𝐴 + 𝐶) + 1) = 𝐸 |
numaddc.10 | ⊢ (𝐵 + 𝐷) = ((𝑇 · 1) + 𝐹) |
Ref | Expression |
---|---|
numaddc | ⊢ (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numma.6 | . . . . . 6 ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) | |
2 | numma.1 | . . . . . . 7 ⊢ 𝑇 ∈ ℕ0 | |
3 | numma.2 | . . . . . . 7 ⊢ 𝐴 ∈ ℕ0 | |
4 | numma.3 | . . . . . . 7 ⊢ 𝐵 ∈ ℕ0 | |
5 | 2, 3, 4 | numcl 9463 | . . . . . 6 ⊢ ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0 |
6 | 1, 5 | eqeltri 2266 | . . . . 5 ⊢ 𝑀 ∈ ℕ0 |
7 | 6 | nn0cni 9255 | . . . 4 ⊢ 𝑀 ∈ ℂ |
8 | 7 | mulid1i 8023 | . . 3 ⊢ (𝑀 · 1) = 𝑀 |
9 | 8 | oveq1i 5929 | . 2 ⊢ ((𝑀 · 1) + 𝑁) = (𝑀 + 𝑁) |
10 | numma.4 | . . 3 ⊢ 𝐶 ∈ ℕ0 | |
11 | numma.5 | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
12 | numma.7 | . . 3 ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) | |
13 | 1nn0 9259 | . . 3 ⊢ 1 ∈ ℕ0 | |
14 | numaddc.8 | . . 3 ⊢ 𝐹 ∈ ℕ0 | |
15 | 3 | nn0cni 9255 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
16 | 15 | mulid1i 8023 | . . . . 5 ⊢ (𝐴 · 1) = 𝐴 |
17 | 16 | oveq1i 5929 | . . . 4 ⊢ ((𝐴 · 1) + (𝐶 + 1)) = (𝐴 + (𝐶 + 1)) |
18 | 10 | nn0cni 9255 | . . . . 5 ⊢ 𝐶 ∈ ℂ |
19 | ax-1cn 7967 | . . . . 5 ⊢ 1 ∈ ℂ | |
20 | 15, 18, 19 | addassi 8029 | . . . 4 ⊢ ((𝐴 + 𝐶) + 1) = (𝐴 + (𝐶 + 1)) |
21 | numaddc.9 | . . . 4 ⊢ ((𝐴 + 𝐶) + 1) = 𝐸 | |
22 | 17, 20, 21 | 3eqtr2i 2220 | . . 3 ⊢ ((𝐴 · 1) + (𝐶 + 1)) = 𝐸 |
23 | 4 | nn0cni 9255 | . . . . . 6 ⊢ 𝐵 ∈ ℂ |
24 | 23 | mulid1i 8023 | . . . . 5 ⊢ (𝐵 · 1) = 𝐵 |
25 | 24 | oveq1i 5929 | . . . 4 ⊢ ((𝐵 · 1) + 𝐷) = (𝐵 + 𝐷) |
26 | numaddc.10 | . . . 4 ⊢ (𝐵 + 𝐷) = ((𝑇 · 1) + 𝐹) | |
27 | 25, 26 | eqtri 2214 | . . 3 ⊢ ((𝐵 · 1) + 𝐷) = ((𝑇 · 1) + 𝐹) |
28 | 2, 3, 4, 10, 11, 1, 12, 13, 14, 13, 22, 27 | nummac 9495 | . 2 ⊢ ((𝑀 · 1) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
29 | 9, 28 | eqtr3i 2216 | 1 ⊢ (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 (class class class)co 5919 1c1 7875 + caddc 7877 · cmul 7879 ℕ0cn0 9243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-sub 8194 df-inn 8985 df-n0 9244 |
This theorem is referenced by: decaddc 9505 |
Copyright terms: Public domain | W3C validator |