ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txswaphmeolem GIF version

Theorem txswaphmeolem 13114
Description: Show inverse for the "swap components" operation on a Cartesian product. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
txswaphmeolem ((𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩)) = ( I ↾ (𝑋 × 𝑌))
Distinct variable groups:   𝑥,𝑦,𝑋   𝑥,𝑌,𝑦

Proof of Theorem txswaphmeolem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 opelxpi 4643 . . . . . 6 ((𝑦𝑌𝑥𝑋) → ⟨𝑦, 𝑥⟩ ∈ (𝑌 × 𝑋))
21ancoms 266 . . . . 5 ((𝑥𝑋𝑦𝑌) → ⟨𝑦, 𝑥⟩ ∈ (𝑌 × 𝑋))
32adantl 275 . . . 4 ((⊤ ∧ (𝑥𝑋𝑦𝑌)) → ⟨𝑦, 𝑥⟩ ∈ (𝑌 × 𝑋))
4 eqidd 2171 . . . 4 (⊤ → (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩))
5 sneq 3594 . . . . . . . . . 10 (𝑧 = ⟨𝑦, 𝑥⟩ → {𝑧} = {⟨𝑦, 𝑥⟩})
65cnveqd 4787 . . . . . . . . 9 (𝑧 = ⟨𝑦, 𝑥⟩ → {𝑧} = {⟨𝑦, 𝑥⟩})
76unieqd 3807 . . . . . . . 8 (𝑧 = ⟨𝑦, 𝑥⟩ → {𝑧} = {⟨𝑦, 𝑥⟩})
8 vex 2733 . . . . . . . . 9 𝑦 ∈ V
9 vex 2733 . . . . . . . . 9 𝑥 ∈ V
10 opswapg 5097 . . . . . . . . 9 ((𝑦 ∈ V ∧ 𝑥 ∈ V) → {⟨𝑦, 𝑥⟩} = ⟨𝑥, 𝑦⟩)
118, 9, 10mp2an 424 . . . . . . . 8 {⟨𝑦, 𝑥⟩} = ⟨𝑥, 𝑦
127, 11eqtrdi 2219 . . . . . . 7 (𝑧 = ⟨𝑦, 𝑥⟩ → {𝑧} = ⟨𝑥, 𝑦⟩)
1312mpompt 5945 . . . . . 6 (𝑧 ∈ (𝑌 × 𝑋) ↦ {𝑧}) = (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩)
1413eqcomi 2174 . . . . 5 (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩) = (𝑧 ∈ (𝑌 × 𝑋) ↦ {𝑧})
1514a1i 9 . . . 4 (⊤ → (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩) = (𝑧 ∈ (𝑌 × 𝑋) ↦ {𝑧}))
163, 4, 15, 12fmpoco 6195 . . 3 (⊤ → ((𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩)) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑥, 𝑦⟩))
1716mptru 1357 . 2 ((𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩)) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑥, 𝑦⟩)
18 id 19 . . 3 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑥, 𝑦⟩)
1918mpompt 5945 . 2 (𝑧 ∈ (𝑋 × 𝑌) ↦ 𝑧) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑥, 𝑦⟩)
20 mptresid 4945 . 2 (𝑧 ∈ (𝑋 × 𝑌) ↦ 𝑧) = ( I ↾ (𝑋 × 𝑌))
2117, 19, 203eqtr2i 2197 1 ((𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩)) = ( I ↾ (𝑋 × 𝑌))
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1348  wtru 1349  wcel 2141  Vcvv 2730  {csn 3583  cop 3586   cuni 3796  cmpt 4050   I cid 4273   × cxp 4609  ccnv 4610  cres 4613  ccom 4615  cmpo 5855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120
This theorem is referenced by:  txswaphmeo  13115
  Copyright terms: Public domain W3C validator