ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txswaphmeolem GIF version

Theorem txswaphmeolem 13905
Description: Show inverse for the "swap components" operation on a Cartesian product. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
txswaphmeolem ((𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩)) = ( I ↾ (𝑋 × 𝑌))
Distinct variable groups:   𝑥,𝑦,𝑋   𝑥,𝑌,𝑦

Proof of Theorem txswaphmeolem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 opelxpi 4660 . . . . . 6 ((𝑦𝑌𝑥𝑋) → ⟨𝑦, 𝑥⟩ ∈ (𝑌 × 𝑋))
21ancoms 268 . . . . 5 ((𝑥𝑋𝑦𝑌) → ⟨𝑦, 𝑥⟩ ∈ (𝑌 × 𝑋))
32adantl 277 . . . 4 ((⊤ ∧ (𝑥𝑋𝑦𝑌)) → ⟨𝑦, 𝑥⟩ ∈ (𝑌 × 𝑋))
4 eqidd 2178 . . . 4 (⊤ → (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩))
5 sneq 3605 . . . . . . . . . 10 (𝑧 = ⟨𝑦, 𝑥⟩ → {𝑧} = {⟨𝑦, 𝑥⟩})
65cnveqd 4805 . . . . . . . . 9 (𝑧 = ⟨𝑦, 𝑥⟩ → {𝑧} = {⟨𝑦, 𝑥⟩})
76unieqd 3822 . . . . . . . 8 (𝑧 = ⟨𝑦, 𝑥⟩ → {𝑧} = {⟨𝑦, 𝑥⟩})
8 vex 2742 . . . . . . . . 9 𝑦 ∈ V
9 vex 2742 . . . . . . . . 9 𝑥 ∈ V
10 opswapg 5117 . . . . . . . . 9 ((𝑦 ∈ V ∧ 𝑥 ∈ V) → {⟨𝑦, 𝑥⟩} = ⟨𝑥, 𝑦⟩)
118, 9, 10mp2an 426 . . . . . . . 8 {⟨𝑦, 𝑥⟩} = ⟨𝑥, 𝑦
127, 11eqtrdi 2226 . . . . . . 7 (𝑧 = ⟨𝑦, 𝑥⟩ → {𝑧} = ⟨𝑥, 𝑦⟩)
1312mpompt 5969 . . . . . 6 (𝑧 ∈ (𝑌 × 𝑋) ↦ {𝑧}) = (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩)
1413eqcomi 2181 . . . . 5 (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩) = (𝑧 ∈ (𝑌 × 𝑋) ↦ {𝑧})
1514a1i 9 . . . 4 (⊤ → (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩) = (𝑧 ∈ (𝑌 × 𝑋) ↦ {𝑧}))
163, 4, 15, 12fmpoco 6219 . . 3 (⊤ → ((𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩)) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑥, 𝑦⟩))
1716mptru 1362 . 2 ((𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩)) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑥, 𝑦⟩)
18 id 19 . . 3 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑥, 𝑦⟩)
1918mpompt 5969 . 2 (𝑧 ∈ (𝑋 × 𝑌) ↦ 𝑧) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑥, 𝑦⟩)
20 mptresid 4963 . 2 (𝑧 ∈ (𝑋 × 𝑌) ↦ 𝑧) = ( I ↾ (𝑋 × 𝑌))
2117, 19, 203eqtr2i 2204 1 ((𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩)) = ( I ↾ (𝑋 × 𝑌))
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1353  wtru 1354  wcel 2148  Vcvv 2739  {csn 3594  cop 3597   cuni 3811  cmpt 4066   I cid 4290   × cxp 4626  ccnv 4627  cres 4630  ccom 4632  cmpo 5879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144
This theorem is referenced by:  txswaphmeo  13906
  Copyright terms: Public domain W3C validator