| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > txswaphmeolem | GIF version | ||
| Description: Show inverse for the "swap components" operation on a Cartesian product. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| txswaphmeolem | ⊢ ((𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) ∘ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)) = ( I ↾ (𝑋 × 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . . 3 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝑧 = 〈𝑥, 𝑦〉) | |
| 2 | 1 | mpompt 6018 | . 2 ⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ 𝑧) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑥, 𝑦〉) |
| 3 | mptresid 5001 | . 2 ⊢ ( I ↾ (𝑋 × 𝑌)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ 𝑧) | |
| 4 | opelxpi 4696 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋) → 〈𝑦, 𝑥〉 ∈ (𝑌 × 𝑋)) | |
| 5 | 4 | ancoms 268 | . . . . 5 ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → 〈𝑦, 𝑥〉 ∈ (𝑌 × 𝑋)) |
| 6 | 5 | adantl 277 | . . . 4 ⊢ ((⊤ ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌)) → 〈𝑦, 𝑥〉 ∈ (𝑌 × 𝑋)) |
| 7 | eqidd 2197 | . . . 4 ⊢ (⊤ → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)) | |
| 8 | sneq 3634 | . . . . . . . . . 10 ⊢ (𝑧 = 〈𝑦, 𝑥〉 → {𝑧} = {〈𝑦, 𝑥〉}) | |
| 9 | 8 | cnveqd 4843 | . . . . . . . . 9 ⊢ (𝑧 = 〈𝑦, 𝑥〉 → ◡{𝑧} = ◡{〈𝑦, 𝑥〉}) |
| 10 | 9 | unieqd 3851 | . . . . . . . 8 ⊢ (𝑧 = 〈𝑦, 𝑥〉 → ∪ ◡{𝑧} = ∪ ◡{〈𝑦, 𝑥〉}) |
| 11 | vex 2766 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
| 12 | vex 2766 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
| 13 | opswapg 5157 | . . . . . . . . 9 ⊢ ((𝑦 ∈ V ∧ 𝑥 ∈ V) → ∪ ◡{〈𝑦, 𝑥〉} = 〈𝑥, 𝑦〉) | |
| 14 | 11, 12, 13 | mp2an 426 | . . . . . . . 8 ⊢ ∪ ◡{〈𝑦, 𝑥〉} = 〈𝑥, 𝑦〉 |
| 15 | 10, 14 | eqtrdi 2245 | . . . . . . 7 ⊢ (𝑧 = 〈𝑦, 𝑥〉 → ∪ ◡{𝑧} = 〈𝑥, 𝑦〉) |
| 16 | 15 | mpompt 6018 | . . . . . 6 ⊢ (𝑧 ∈ (𝑌 × 𝑋) ↦ ∪ ◡{𝑧}) = (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) |
| 17 | 16 | eqcomi 2200 | . . . . 5 ⊢ (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) = (𝑧 ∈ (𝑌 × 𝑋) ↦ ∪ ◡{𝑧}) |
| 18 | 17 | a1i 9 | . . . 4 ⊢ (⊤ → (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) = (𝑧 ∈ (𝑌 × 𝑋) ↦ ∪ ◡{𝑧})) |
| 19 | 6, 7, 18, 15 | fmpoco 6283 | . . 3 ⊢ (⊤ → ((𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) ∘ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑥, 𝑦〉)) |
| 20 | 19 | mptru 1373 | . 2 ⊢ ((𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) ∘ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑥, 𝑦〉) |
| 21 | 2, 3, 20 | 3eqtr4ri 2228 | 1 ⊢ ((𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) ∘ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)) = ( I ↾ (𝑋 × 𝑌)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1364 ⊤wtru 1365 ∈ wcel 2167 Vcvv 2763 {csn 3623 〈cop 3626 ∪ cuni 3840 ↦ cmpt 4095 I cid 4324 × cxp 4662 ◡ccnv 4663 ↾ cres 4666 ∘ ccom 4668 ∈ cmpo 5927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 |
| This theorem is referenced by: txswaphmeo 14641 |
| Copyright terms: Public domain | W3C validator |