Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > txswaphmeolem | GIF version |
Description: Show inverse for the "swap components" operation on a Cartesian product. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
txswaphmeolem | ⊢ ((𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) ∘ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)) = ( I ↾ (𝑋 × 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 4618 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋) → 〈𝑦, 𝑥〉 ∈ (𝑌 × 𝑋)) | |
2 | 1 | ancoms 266 | . . . . 5 ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → 〈𝑦, 𝑥〉 ∈ (𝑌 × 𝑋)) |
3 | 2 | adantl 275 | . . . 4 ⊢ ((⊤ ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌)) → 〈𝑦, 𝑥〉 ∈ (𝑌 × 𝑋)) |
4 | eqidd 2158 | . . . 4 ⊢ (⊤ → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)) | |
5 | sneq 3571 | . . . . . . . . . 10 ⊢ (𝑧 = 〈𝑦, 𝑥〉 → {𝑧} = {〈𝑦, 𝑥〉}) | |
6 | 5 | cnveqd 4762 | . . . . . . . . 9 ⊢ (𝑧 = 〈𝑦, 𝑥〉 → ◡{𝑧} = ◡{〈𝑦, 𝑥〉}) |
7 | 6 | unieqd 3783 | . . . . . . . 8 ⊢ (𝑧 = 〈𝑦, 𝑥〉 → ∪ ◡{𝑧} = ∪ ◡{〈𝑦, 𝑥〉}) |
8 | vex 2715 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
9 | vex 2715 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
10 | opswapg 5072 | . . . . . . . . 9 ⊢ ((𝑦 ∈ V ∧ 𝑥 ∈ V) → ∪ ◡{〈𝑦, 𝑥〉} = 〈𝑥, 𝑦〉) | |
11 | 8, 9, 10 | mp2an 423 | . . . . . . . 8 ⊢ ∪ ◡{〈𝑦, 𝑥〉} = 〈𝑥, 𝑦〉 |
12 | 7, 11 | eqtrdi 2206 | . . . . . . 7 ⊢ (𝑧 = 〈𝑦, 𝑥〉 → ∪ ◡{𝑧} = 〈𝑥, 𝑦〉) |
13 | 12 | mpompt 5913 | . . . . . 6 ⊢ (𝑧 ∈ (𝑌 × 𝑋) ↦ ∪ ◡{𝑧}) = (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) |
14 | 13 | eqcomi 2161 | . . . . 5 ⊢ (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) = (𝑧 ∈ (𝑌 × 𝑋) ↦ ∪ ◡{𝑧}) |
15 | 14 | a1i 9 | . . . 4 ⊢ (⊤ → (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) = (𝑧 ∈ (𝑌 × 𝑋) ↦ ∪ ◡{𝑧})) |
16 | 3, 4, 15, 12 | fmpoco 6163 | . . 3 ⊢ (⊤ → ((𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) ∘ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑥, 𝑦〉)) |
17 | 16 | mptru 1344 | . 2 ⊢ ((𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) ∘ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑥, 𝑦〉) |
18 | id 19 | . . 3 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝑧 = 〈𝑥, 𝑦〉) | |
19 | 18 | mpompt 5913 | . 2 ⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ 𝑧) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑥, 𝑦〉) |
20 | mptresid 4920 | . 2 ⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ 𝑧) = ( I ↾ (𝑋 × 𝑌)) | |
21 | 17, 19, 20 | 3eqtr2i 2184 | 1 ⊢ ((𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) ∘ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)) = ( I ↾ (𝑋 × 𝑌)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1335 ⊤wtru 1336 ∈ wcel 2128 Vcvv 2712 {csn 3560 〈cop 3563 ∪ cuni 3772 ↦ cmpt 4025 I cid 4248 × cxp 4584 ◡ccnv 4585 ↾ cres 4588 ∘ ccom 4590 ∈ cmpo 5826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-rn 4597 df-res 4598 df-ima 4599 df-iota 5135 df-fun 5172 df-fn 5173 df-f 5174 df-fv 5178 df-oprab 5828 df-mpo 5829 df-1st 6088 df-2nd 6089 |
This theorem is referenced by: txswaphmeo 12721 |
Copyright terms: Public domain | W3C validator |