![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > txswaphmeolem | GIF version |
Description: Show inverse for the "swap components" operation on a Cartesian product. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
txswaphmeolem | ⊢ ((𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ ⟨𝑥, 𝑦⟩) ∘ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ⟨𝑦, 𝑥⟩)) = ( I ↾ (𝑋 × 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 4660 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋) → ⟨𝑦, 𝑥⟩ ∈ (𝑌 × 𝑋)) | |
2 | 1 | ancoms 268 | . . . . 5 ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → ⟨𝑦, 𝑥⟩ ∈ (𝑌 × 𝑋)) |
3 | 2 | adantl 277 | . . . 4 ⊢ ((⊤ ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌)) → ⟨𝑦, 𝑥⟩ ∈ (𝑌 × 𝑋)) |
4 | eqidd 2178 | . . . 4 ⊢ (⊤ → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ⟨𝑦, 𝑥⟩) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ⟨𝑦, 𝑥⟩)) | |
5 | sneq 3605 | . . . . . . . . . 10 ⊢ (𝑧 = ⟨𝑦, 𝑥⟩ → {𝑧} = {⟨𝑦, 𝑥⟩}) | |
6 | 5 | cnveqd 4805 | . . . . . . . . 9 ⊢ (𝑧 = ⟨𝑦, 𝑥⟩ → ◡{𝑧} = ◡{⟨𝑦, 𝑥⟩}) |
7 | 6 | unieqd 3822 | . . . . . . . 8 ⊢ (𝑧 = ⟨𝑦, 𝑥⟩ → ∪ ◡{𝑧} = ∪ ◡{⟨𝑦, 𝑥⟩}) |
8 | vex 2742 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
9 | vex 2742 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
10 | opswapg 5117 | . . . . . . . . 9 ⊢ ((𝑦 ∈ V ∧ 𝑥 ∈ V) → ∪ ◡{⟨𝑦, 𝑥⟩} = ⟨𝑥, 𝑦⟩) | |
11 | 8, 9, 10 | mp2an 426 | . . . . . . . 8 ⊢ ∪ ◡{⟨𝑦, 𝑥⟩} = ⟨𝑥, 𝑦⟩ |
12 | 7, 11 | eqtrdi 2226 | . . . . . . 7 ⊢ (𝑧 = ⟨𝑦, 𝑥⟩ → ∪ ◡{𝑧} = ⟨𝑥, 𝑦⟩) |
13 | 12 | mpompt 5969 | . . . . . 6 ⊢ (𝑧 ∈ (𝑌 × 𝑋) ↦ ∪ ◡{𝑧}) = (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ ⟨𝑥, 𝑦⟩) |
14 | 13 | eqcomi 2181 | . . . . 5 ⊢ (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ ⟨𝑥, 𝑦⟩) = (𝑧 ∈ (𝑌 × 𝑋) ↦ ∪ ◡{𝑧}) |
15 | 14 | a1i 9 | . . . 4 ⊢ (⊤ → (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ ⟨𝑥, 𝑦⟩) = (𝑧 ∈ (𝑌 × 𝑋) ↦ ∪ ◡{𝑧})) |
16 | 3, 4, 15, 12 | fmpoco 6219 | . . 3 ⊢ (⊤ → ((𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ ⟨𝑥, 𝑦⟩) ∘ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ⟨𝑦, 𝑥⟩)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ⟨𝑥, 𝑦⟩)) |
17 | 16 | mptru 1362 | . 2 ⊢ ((𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ ⟨𝑥, 𝑦⟩) ∘ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ⟨𝑦, 𝑥⟩)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ⟨𝑥, 𝑦⟩) |
18 | id 19 | . . 3 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑥, 𝑦⟩) | |
19 | 18 | mpompt 5969 | . 2 ⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ 𝑧) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ⟨𝑥, 𝑦⟩) |
20 | mptresid 4963 | . 2 ⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ 𝑧) = ( I ↾ (𝑋 × 𝑌)) | |
21 | 17, 19, 20 | 3eqtr2i 2204 | 1 ⊢ ((𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ ⟨𝑥, 𝑦⟩) ∘ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ⟨𝑦, 𝑥⟩)) = ( I ↾ (𝑋 × 𝑌)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1353 ⊤wtru 1354 ∈ wcel 2148 Vcvv 2739 {csn 3594 ⟨cop 3597 ∪ cuni 3811 ↦ cmpt 4066 I cid 4290 × cxp 4626 ◡ccnv 4627 ↾ cres 4630 ∘ ccom 4632 ∈ cmpo 5879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 |
This theorem is referenced by: txswaphmeo 13906 |
Copyright terms: Public domain | W3C validator |