Proof of Theorem halfpm6th
| Step | Hyp | Ref
 | Expression | 
| 1 |   | 3cn 9065 | 
. . . . . 6
⊢ 3 ∈
ℂ | 
| 2 |   | ax-1cn 7972 | 
. . . . . 6
⊢ 1 ∈
ℂ | 
| 3 |   | 2cn 9061 | 
. . . . . 6
⊢ 2 ∈
ℂ | 
| 4 |   | 3re 9064 | 
. . . . . . 7
⊢ 3 ∈
ℝ | 
| 5 |   | 3pos 9084 | 
. . . . . . 7
⊢ 0 <
3 | 
| 6 | 4, 5 | gt0ap0ii 8655 | 
. . . . . 6
⊢ 3 #
0 | 
| 7 |   | 2ap0 9083 | 
. . . . . 6
⊢ 2 #
0 | 
| 8 | 1, 1, 2, 3, 6, 7 | divmuldivapi 8799 | 
. . . . 5
⊢ ((3 / 3)
· (1 / 2)) = ((3 · 1) / (3 · 2)) | 
| 9 | 1, 6 | dividapi 8772 | 
. . . . . . 7
⊢ (3 / 3) =
1 | 
| 10 | 9 | oveq1i 5932 | 
. . . . . 6
⊢ ((3 / 3)
· (1 / 2)) = (1 · (1 / 2)) | 
| 11 |   | halfcn 9205 | 
. . . . . . 7
⊢ (1 / 2)
∈ ℂ | 
| 12 | 11 | mullidi 8029 | 
. . . . . 6
⊢ (1
· (1 / 2)) = (1 / 2) | 
| 13 | 10, 12 | eqtri 2217 | 
. . . . 5
⊢ ((3 / 3)
· (1 / 2)) = (1 / 2) | 
| 14 | 1 | mulridi 8028 | 
. . . . . 6
⊢ (3
· 1) = 3 | 
| 15 |   | 3t2e6 9147 | 
. . . . . 6
⊢ (3
· 2) = 6 | 
| 16 | 14, 15 | oveq12i 5934 | 
. . . . 5
⊢ ((3
· 1) / (3 · 2)) = (3 / 6) | 
| 17 | 8, 13, 16 | 3eqtr3i 2225 | 
. . . 4
⊢ (1 / 2) =
(3 / 6) | 
| 18 | 17 | oveq1i 5932 | 
. . 3
⊢ ((1 / 2)
− (1 / 6)) = ((3 / 6) − (1 / 6)) | 
| 19 |   | 6cn 9072 | 
. . . . 5
⊢ 6 ∈
ℂ | 
| 20 |   | 6re 9071 | 
. . . . . 6
⊢ 6 ∈
ℝ | 
| 21 |   | 6pos 9091 | 
. . . . . 6
⊢ 0 <
6 | 
| 22 | 20, 21 | gt0ap0ii 8655 | 
. . . . 5
⊢ 6 #
0 | 
| 23 | 19, 22 | pm3.2i 272 | 
. . . 4
⊢ (6 ∈
ℂ ∧ 6 # 0) | 
| 24 |   | divsubdirap 8735 | 
. . . 4
⊢ ((3
∈ ℂ ∧ 1 ∈ ℂ ∧ (6 ∈ ℂ ∧ 6 # 0))
→ ((3 − 1) / 6) = ((3 / 6) − (1 / 6))) | 
| 25 | 1, 2, 23, 24 | mp3an 1348 | 
. . 3
⊢ ((3
− 1) / 6) = ((3 / 6) − (1 / 6)) | 
| 26 |   | 3m1e2 9110 | 
. . . . 5
⊢ (3
− 1) = 2 | 
| 27 | 26 | oveq1i 5932 | 
. . . 4
⊢ ((3
− 1) / 6) = (2 / 6) | 
| 28 | 3 | mullidi 8029 | 
. . . . 5
⊢ (1
· 2) = 2 | 
| 29 | 28, 15 | oveq12i 5934 | 
. . . 4
⊢ ((1
· 2) / (3 · 2)) = (2 / 6) | 
| 30 | 3, 7 | dividapi 8772 | 
. . . . . 6
⊢ (2 / 2) =
1 | 
| 31 | 30 | oveq2i 5933 | 
. . . . 5
⊢ ((1 / 3)
· (2 / 2)) = ((1 / 3) · 1) | 
| 32 | 2, 1, 3, 3, 6, 7 | divmuldivapi 8799 | 
. . . . 5
⊢ ((1 / 3)
· (2 / 2)) = ((1 · 2) / (3 · 2)) | 
| 33 | 1, 6 | recclapi 8769 | 
. . . . . 6
⊢ (1 / 3)
∈ ℂ | 
| 34 | 33 | mulridi 8028 | 
. . . . 5
⊢ ((1 / 3)
· 1) = (1 / 3) | 
| 35 | 31, 32, 34 | 3eqtr3i 2225 | 
. . . 4
⊢ ((1
· 2) / (3 · 2)) = (1 / 3) | 
| 36 | 27, 29, 35 | 3eqtr2i 2223 | 
. . 3
⊢ ((3
− 1) / 6) = (1 / 3) | 
| 37 | 18, 25, 36 | 3eqtr2i 2223 | 
. 2
⊢ ((1 / 2)
− (1 / 6)) = (1 / 3) | 
| 38 | 1, 2, 19, 22 | divdirapi 8796 | 
. . . 4
⊢ ((3 + 1)
/ 6) = ((3 / 6) + (1 / 6)) | 
| 39 |   | df-4 9051 | 
. . . . 5
⊢ 4 = (3 +
1) | 
| 40 | 39 | oveq1i 5932 | 
. . . 4
⊢ (4 / 6) =
((3 + 1) / 6) | 
| 41 | 17 | oveq1i 5932 | 
. . . 4
⊢ ((1 / 2)
+ (1 / 6)) = ((3 / 6) + (1 / 6)) | 
| 42 | 38, 40, 41 | 3eqtr4ri 2228 | 
. . 3
⊢ ((1 / 2)
+ (1 / 6)) = (4 / 6) | 
| 43 |   | 2t2e4 9145 | 
. . . 4
⊢ (2
· 2) = 4 | 
| 44 | 43, 15 | oveq12i 5934 | 
. . 3
⊢ ((2
· 2) / (3 · 2)) = (4 / 6) | 
| 45 | 30 | oveq2i 5933 | 
. . . 4
⊢ ((2 / 3)
· (2 / 2)) = ((2 / 3) · 1) | 
| 46 | 3, 1, 3, 3, 6, 7 | divmuldivapi 8799 | 
. . . 4
⊢ ((2 / 3)
· (2 / 2)) = ((2 · 2) / (3 · 2)) | 
| 47 | 3, 1, 6 | divclapi 8781 | 
. . . . 5
⊢ (2 / 3)
∈ ℂ | 
| 48 | 47 | mulridi 8028 | 
. . . 4
⊢ ((2 / 3)
· 1) = (2 / 3) | 
| 49 | 45, 46, 48 | 3eqtr3i 2225 | 
. . 3
⊢ ((2
· 2) / (3 · 2)) = (2 / 3) | 
| 50 | 42, 44, 49 | 3eqtr2i 2223 | 
. 2
⊢ ((1 / 2)
+ (1 / 6)) = (2 / 3) | 
| 51 | 37, 50 | pm3.2i 272 | 
1
⊢ (((1 / 2)
− (1 / 6)) = (1 / 3) ∧ ((1 / 2) + (1 / 6)) = (2 /
3)) |