![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 6p5lem | GIF version |
Description: Lemma for 6p5e11 9152 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
6p5lem.1 | ⊢ 𝐴 ∈ ℕ0 |
6p5lem.2 | ⊢ 𝐷 ∈ ℕ0 |
6p5lem.3 | ⊢ 𝐸 ∈ ℕ0 |
6p5lem.4 | ⊢ 𝐵 = (𝐷 + 1) |
6p5lem.5 | ⊢ 𝐶 = (𝐸 + 1) |
6p5lem.6 | ⊢ (𝐴 + 𝐷) = ;1𝐸 |
Ref | Expression |
---|---|
6p5lem | ⊢ (𝐴 + 𝐵) = ;1𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6p5lem.4 | . . 3 ⊢ 𝐵 = (𝐷 + 1) | |
2 | 1 | oveq2i 5737 | . 2 ⊢ (𝐴 + 𝐵) = (𝐴 + (𝐷 + 1)) |
3 | 6p5lem.1 | . . . 4 ⊢ 𝐴 ∈ ℕ0 | |
4 | 3 | nn0cni 8887 | . . 3 ⊢ 𝐴 ∈ ℂ |
5 | 6p5lem.2 | . . . 4 ⊢ 𝐷 ∈ ℕ0 | |
6 | 5 | nn0cni 8887 | . . 3 ⊢ 𝐷 ∈ ℂ |
7 | ax-1cn 7632 | . . 3 ⊢ 1 ∈ ℂ | |
8 | 4, 6, 7 | addassi 7692 | . 2 ⊢ ((𝐴 + 𝐷) + 1) = (𝐴 + (𝐷 + 1)) |
9 | 1nn0 8891 | . . 3 ⊢ 1 ∈ ℕ0 | |
10 | 6p5lem.3 | . . 3 ⊢ 𝐸 ∈ ℕ0 | |
11 | 6p5lem.5 | . . . 4 ⊢ 𝐶 = (𝐸 + 1) | |
12 | 11 | eqcomi 2117 | . . 3 ⊢ (𝐸 + 1) = 𝐶 |
13 | 6p5lem.6 | . . 3 ⊢ (𝐴 + 𝐷) = ;1𝐸 | |
14 | 9, 10, 12, 13 | decsuc 9110 | . 2 ⊢ ((𝐴 + 𝐷) + 1) = ;1𝐶 |
15 | 2, 8, 14 | 3eqtr2i 2139 | 1 ⊢ (𝐴 + 𝐵) = ;1𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1312 ∈ wcel 1461 (class class class)co 5726 1c1 7542 + caddc 7544 ℕ0cn0 8875 ;cdc 9080 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-pow 4056 ax-pr 4089 ax-setind 4410 ax-cnex 7630 ax-resscn 7631 ax-1cn 7632 ax-1re 7633 ax-icn 7634 ax-addcl 7635 ax-addrcl 7636 ax-mulcl 7637 ax-addcom 7639 ax-mulcom 7640 ax-addass 7641 ax-mulass 7642 ax-distr 7643 ax-i2m1 7644 ax-1rid 7646 ax-0id 7647 ax-rnegex 7648 ax-cnre 7650 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-fal 1318 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ne 2281 df-ral 2393 df-rex 2394 df-reu 2395 df-rab 2397 df-v 2657 df-sbc 2877 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-int 3736 df-br 3894 df-opab 3948 df-id 4173 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-iota 5044 df-fun 5081 df-fv 5087 df-riota 5682 df-ov 5729 df-oprab 5730 df-mpo 5731 df-sub 7852 df-inn 8625 df-2 8683 df-3 8684 df-4 8685 df-5 8686 df-6 8687 df-7 8688 df-8 8689 df-9 8690 df-n0 8876 df-dec 9081 |
This theorem is referenced by: 6p5e11 9152 6p6e12 9153 7p4e11 9155 7p5e12 9156 7p6e13 9157 7p7e14 9158 8p3e11 9160 8p4e12 9161 8p5e13 9162 8p6e14 9163 8p7e15 9164 8p8e16 9165 9p2e11 9166 9p3e12 9167 9p4e13 9168 9p5e14 9169 9p6e15 9170 9p7e16 9171 9p8e17 9172 9p9e18 9173 |
Copyright terms: Public domain | W3C validator |