| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 6p5lem | GIF version | ||
| Description: Lemma for 6p5e11 9558 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 6p5lem.1 | ⊢ 𝐴 ∈ ℕ0 |
| 6p5lem.2 | ⊢ 𝐷 ∈ ℕ0 |
| 6p5lem.3 | ⊢ 𝐸 ∈ ℕ0 |
| 6p5lem.4 | ⊢ 𝐵 = (𝐷 + 1) |
| 6p5lem.5 | ⊢ 𝐶 = (𝐸 + 1) |
| 6p5lem.6 | ⊢ (𝐴 + 𝐷) = ;1𝐸 |
| Ref | Expression |
|---|---|
| 6p5lem | ⊢ (𝐴 + 𝐵) = ;1𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6p5lem.4 | . . 3 ⊢ 𝐵 = (𝐷 + 1) | |
| 2 | 1 | oveq2i 5945 | . 2 ⊢ (𝐴 + 𝐵) = (𝐴 + (𝐷 + 1)) |
| 3 | 6p5lem.1 | . . . 4 ⊢ 𝐴 ∈ ℕ0 | |
| 4 | 3 | nn0cni 9289 | . . 3 ⊢ 𝐴 ∈ ℂ |
| 5 | 6p5lem.2 | . . . 4 ⊢ 𝐷 ∈ ℕ0 | |
| 6 | 5 | nn0cni 9289 | . . 3 ⊢ 𝐷 ∈ ℂ |
| 7 | ax-1cn 8000 | . . 3 ⊢ 1 ∈ ℂ | |
| 8 | 4, 6, 7 | addassi 8062 | . 2 ⊢ ((𝐴 + 𝐷) + 1) = (𝐴 + (𝐷 + 1)) |
| 9 | 1nn0 9293 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 10 | 6p5lem.3 | . . 3 ⊢ 𝐸 ∈ ℕ0 | |
| 11 | 6p5lem.5 | . . . 4 ⊢ 𝐶 = (𝐸 + 1) | |
| 12 | 11 | eqcomi 2208 | . . 3 ⊢ (𝐸 + 1) = 𝐶 |
| 13 | 6p5lem.6 | . . 3 ⊢ (𝐴 + 𝐷) = ;1𝐸 | |
| 14 | 9, 10, 12, 13 | decsuc 9516 | . 2 ⊢ ((𝐴 + 𝐷) + 1) = ;1𝐶 |
| 15 | 2, 8, 14 | 3eqtr2i 2231 | 1 ⊢ (𝐴 + 𝐵) = ;1𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ∈ wcel 2175 (class class class)co 5934 1c1 7908 + caddc 7910 ℕ0cn0 9277 ;cdc 9486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-i2m1 8012 ax-1rid 8014 ax-0id 8015 ax-rnegex 8016 ax-cnre 8018 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-iota 5229 df-fun 5270 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-sub 8227 df-inn 9019 df-2 9077 df-3 9078 df-4 9079 df-5 9080 df-6 9081 df-7 9082 df-8 9083 df-9 9084 df-n0 9278 df-dec 9487 |
| This theorem is referenced by: 6p5e11 9558 6p6e12 9559 7p4e11 9561 7p5e12 9562 7p6e13 9563 7p7e14 9564 8p3e11 9566 8p4e12 9567 8p5e13 9568 8p6e14 9569 8p7e15 9570 8p8e16 9571 9p2e11 9572 9p3e12 9573 9p4e13 9574 9p5e14 9575 9p6e15 9576 9p7e16 9577 9p8e17 9578 9p9e18 9579 |
| Copyright terms: Public domain | W3C validator |