ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  6p5lem GIF version

Theorem 6p5lem 9149
Description: Lemma for 6p5e11 9152 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.)
Hypotheses
Ref Expression
6p5lem.1 𝐴 ∈ ℕ0
6p5lem.2 𝐷 ∈ ℕ0
6p5lem.3 𝐸 ∈ ℕ0
6p5lem.4 𝐵 = (𝐷 + 1)
6p5lem.5 𝐶 = (𝐸 + 1)
6p5lem.6 (𝐴 + 𝐷) = 1𝐸
Assertion
Ref Expression
6p5lem (𝐴 + 𝐵) = 1𝐶

Proof of Theorem 6p5lem
StepHypRef Expression
1 6p5lem.4 . . 3 𝐵 = (𝐷 + 1)
21oveq2i 5737 . 2 (𝐴 + 𝐵) = (𝐴 + (𝐷 + 1))
3 6p5lem.1 . . . 4 𝐴 ∈ ℕ0
43nn0cni 8887 . . 3 𝐴 ∈ ℂ
5 6p5lem.2 . . . 4 𝐷 ∈ ℕ0
65nn0cni 8887 . . 3 𝐷 ∈ ℂ
7 ax-1cn 7632 . . 3 1 ∈ ℂ
84, 6, 7addassi 7692 . 2 ((𝐴 + 𝐷) + 1) = (𝐴 + (𝐷 + 1))
9 1nn0 8891 . . 3 1 ∈ ℕ0
10 6p5lem.3 . . 3 𝐸 ∈ ℕ0
11 6p5lem.5 . . . 4 𝐶 = (𝐸 + 1)
1211eqcomi 2117 . . 3 (𝐸 + 1) = 𝐶
13 6p5lem.6 . . 3 (𝐴 + 𝐷) = 1𝐸
149, 10, 12, 13decsuc 9110 . 2 ((𝐴 + 𝐷) + 1) = 1𝐶
152, 8, 143eqtr2i 2139 1 (𝐴 + 𝐵) = 1𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1312  wcel 1461  (class class class)co 5726  1c1 7542   + caddc 7544  0cn0 8875  cdc 9080
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089  ax-setind 4410  ax-cnex 7630  ax-resscn 7631  ax-1cn 7632  ax-1re 7633  ax-icn 7634  ax-addcl 7635  ax-addrcl 7636  ax-mulcl 7637  ax-addcom 7639  ax-mulcom 7640  ax-addass 7641  ax-mulass 7642  ax-distr 7643  ax-i2m1 7644  ax-1rid 7646  ax-0id 7647  ax-rnegex 7648  ax-cnre 7650
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-ral 2393  df-rex 2394  df-reu 2395  df-rab 2397  df-v 2657  df-sbc 2877  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-br 3894  df-opab 3948  df-id 4173  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-iota 5044  df-fun 5081  df-fv 5087  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-sub 7852  df-inn 8625  df-2 8683  df-3 8684  df-4 8685  df-5 8686  df-6 8687  df-7 8688  df-8 8689  df-9 8690  df-n0 8876  df-dec 9081
This theorem is referenced by:  6p5e11  9152  6p6e12  9153  7p4e11  9155  7p5e12  9156  7p6e13  9157  7p7e14  9158  8p3e11  9160  8p4e12  9161  8p5e13  9162  8p6e14  9163  8p7e15  9164  8p8e16  9165  9p2e11  9166  9p3e12  9167  9p4e13  9168  9p5e14  9169  9p6e15  9170  9p7e16  9171  9p8e17  9172  9p9e18  9173
  Copyright terms: Public domain W3C validator