| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 6p5lem | GIF version | ||
| Description: Lemma for 6p5e11 9646 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 6p5lem.1 | ⊢ 𝐴 ∈ ℕ0 |
| 6p5lem.2 | ⊢ 𝐷 ∈ ℕ0 |
| 6p5lem.3 | ⊢ 𝐸 ∈ ℕ0 |
| 6p5lem.4 | ⊢ 𝐵 = (𝐷 + 1) |
| 6p5lem.5 | ⊢ 𝐶 = (𝐸 + 1) |
| 6p5lem.6 | ⊢ (𝐴 + 𝐷) = ;1𝐸 |
| Ref | Expression |
|---|---|
| 6p5lem | ⊢ (𝐴 + 𝐵) = ;1𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6p5lem.4 | . . 3 ⊢ 𝐵 = (𝐷 + 1) | |
| 2 | 1 | oveq2i 6011 | . 2 ⊢ (𝐴 + 𝐵) = (𝐴 + (𝐷 + 1)) |
| 3 | 6p5lem.1 | . . . 4 ⊢ 𝐴 ∈ ℕ0 | |
| 4 | 3 | nn0cni 9377 | . . 3 ⊢ 𝐴 ∈ ℂ |
| 5 | 6p5lem.2 | . . . 4 ⊢ 𝐷 ∈ ℕ0 | |
| 6 | 5 | nn0cni 9377 | . . 3 ⊢ 𝐷 ∈ ℂ |
| 7 | ax-1cn 8088 | . . 3 ⊢ 1 ∈ ℂ | |
| 8 | 4, 6, 7 | addassi 8150 | . 2 ⊢ ((𝐴 + 𝐷) + 1) = (𝐴 + (𝐷 + 1)) |
| 9 | 1nn0 9381 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 10 | 6p5lem.3 | . . 3 ⊢ 𝐸 ∈ ℕ0 | |
| 11 | 6p5lem.5 | . . . 4 ⊢ 𝐶 = (𝐸 + 1) | |
| 12 | 11 | eqcomi 2233 | . . 3 ⊢ (𝐸 + 1) = 𝐶 |
| 13 | 6p5lem.6 | . . 3 ⊢ (𝐴 + 𝐷) = ;1𝐸 | |
| 14 | 9, 10, 12, 13 | decsuc 9604 | . 2 ⊢ ((𝐴 + 𝐷) + 1) = ;1𝐶 |
| 15 | 2, 8, 14 | 3eqtr2i 2256 | 1 ⊢ (𝐴 + 𝐵) = ;1𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 (class class class)co 6000 1c1 7996 + caddc 7998 ℕ0cn0 9365 ;cdc 9574 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-sub 8315 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-9 9172 df-n0 9366 df-dec 9575 |
| This theorem is referenced by: 6p5e11 9646 6p6e12 9647 7p4e11 9649 7p5e12 9650 7p6e13 9651 7p7e14 9652 8p3e11 9654 8p4e12 9655 8p5e13 9656 8p6e14 9657 8p7e15 9658 8p8e16 9659 9p2e11 9660 9p3e12 9661 9p4e13 9662 9p5e14 9663 9p6e15 9664 9p7e16 9665 9p8e17 9666 9p9e18 9667 |
| Copyright terms: Public domain | W3C validator |