ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  6p5lem GIF version

Theorem 6p5lem 9270
Description: Lemma for 6p5e11 9273 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.)
Hypotheses
Ref Expression
6p5lem.1 𝐴 ∈ ℕ0
6p5lem.2 𝐷 ∈ ℕ0
6p5lem.3 𝐸 ∈ ℕ0
6p5lem.4 𝐵 = (𝐷 + 1)
6p5lem.5 𝐶 = (𝐸 + 1)
6p5lem.6 (𝐴 + 𝐷) = 1𝐸
Assertion
Ref Expression
6p5lem (𝐴 + 𝐵) = 1𝐶

Proof of Theorem 6p5lem
StepHypRef Expression
1 6p5lem.4 . . 3 𝐵 = (𝐷 + 1)
21oveq2i 5788 . 2 (𝐴 + 𝐵) = (𝐴 + (𝐷 + 1))
3 6p5lem.1 . . . 4 𝐴 ∈ ℕ0
43nn0cni 9008 . . 3 𝐴 ∈ ℂ
5 6p5lem.2 . . . 4 𝐷 ∈ ℕ0
65nn0cni 9008 . . 3 𝐷 ∈ ℂ
7 ax-1cn 7732 . . 3 1 ∈ ℂ
84, 6, 7addassi 7793 . 2 ((𝐴 + 𝐷) + 1) = (𝐴 + (𝐷 + 1))
9 1nn0 9012 . . 3 1 ∈ ℕ0
10 6p5lem.3 . . 3 𝐸 ∈ ℕ0
11 6p5lem.5 . . . 4 𝐶 = (𝐸 + 1)
1211eqcomi 2143 . . 3 (𝐸 + 1) = 𝐶
13 6p5lem.6 . . 3 (𝐴 + 𝐷) = 1𝐸
149, 10, 12, 13decsuc 9231 . 2 ((𝐴 + 𝐷) + 1) = 1𝐶
152, 8, 143eqtr2i 2166 1 (𝐴 + 𝐵) = 1𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1331  wcel 1480  (class class class)co 5777  1c1 7640   + caddc 7642  0cn0 8996  cdc 9201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4049  ax-pow 4101  ax-pr 4134  ax-setind 4455  ax-cnex 7730  ax-resscn 7731  ax-1cn 7732  ax-1re 7733  ax-icn 7734  ax-addcl 7735  ax-addrcl 7736  ax-mulcl 7737  ax-addcom 7739  ax-mulcom 7740  ax-addass 7741  ax-mulass 7742  ax-distr 7743  ax-i2m1 7744  ax-1rid 7746  ax-0id 7747  ax-rnegex 7748  ax-cnre 7750
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3740  df-int 3775  df-br 3933  df-opab 3993  df-id 4218  df-xp 4548  df-rel 4549  df-cnv 4550  df-co 4551  df-dm 4552  df-iota 5091  df-fun 5128  df-fv 5134  df-riota 5733  df-ov 5780  df-oprab 5781  df-mpo 5782  df-sub 7954  df-inn 8740  df-2 8798  df-3 8799  df-4 8800  df-5 8801  df-6 8802  df-7 8803  df-8 8804  df-9 8805  df-n0 8997  df-dec 9202
This theorem is referenced by:  6p5e11  9273  6p6e12  9274  7p4e11  9276  7p5e12  9277  7p6e13  9278  7p7e14  9279  8p3e11  9281  8p4e12  9282  8p5e13  9283  8p6e14  9284  8p7e15  9285  8p8e16  9286  9p2e11  9287  9p3e12  9288  9p4e13  9289  9p5e14  9290  9p6e15  9291  9p7e16  9292  9p8e17  9293  9p9e18  9294
  Copyright terms: Public domain W3C validator