ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cocnvcnv2 GIF version

Theorem cocnvcnv2 5240
Description: A composition is not affected by a double converse of its second argument. (Contributed by NM, 8-Oct-2007.)
Assertion
Ref Expression
cocnvcnv2 (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem cocnvcnv2
StepHypRef Expression
1 cnvcnv2 5182 . . 3 𝐵 = (𝐵 ↾ V)
21coeq2i 4882 . 2 (𝐴𝐵) = (𝐴 ∘ (𝐵 ↾ V))
3 resco 5233 . 2 ((𝐴𝐵) ↾ V) = (𝐴 ∘ (𝐵 ↾ V))
4 relco 5227 . . 3 Rel (𝐴𝐵)
5 dfrel3 5186 . . 3 (Rel (𝐴𝐵) ↔ ((𝐴𝐵) ↾ V) = (𝐴𝐵))
64, 5mpbi 145 . 2 ((𝐴𝐵) ↾ V) = (𝐴𝐵)
72, 3, 63eqtr2i 2256 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1395  Vcvv 2799  ccnv 4718  cres 4721  ccom 4723  Rel wrel 4724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-res 4731
This theorem is referenced by:  dfdm2  5263  cofunex2g  6255
  Copyright terms: Public domain W3C validator