ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cocnvcnv2 GIF version

Theorem cocnvcnv2 5195
Description: A composition is not affected by a double converse of its second argument. (Contributed by NM, 8-Oct-2007.)
Assertion
Ref Expression
cocnvcnv2 (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem cocnvcnv2
StepHypRef Expression
1 cnvcnv2 5137 . . 3 𝐵 = (𝐵 ↾ V)
21coeq2i 4839 . 2 (𝐴𝐵) = (𝐴 ∘ (𝐵 ↾ V))
3 resco 5188 . 2 ((𝐴𝐵) ↾ V) = (𝐴 ∘ (𝐵 ↾ V))
4 relco 5182 . . 3 Rel (𝐴𝐵)
5 dfrel3 5141 . . 3 (Rel (𝐴𝐵) ↔ ((𝐴𝐵) ↾ V) = (𝐴𝐵))
64, 5mpbi 145 . 2 ((𝐴𝐵) ↾ V) = (𝐴𝐵)
72, 3, 63eqtr2i 2232 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1373  Vcvv 2772  ccnv 4675  cres 4678  ccom 4680  Rel wrel 4681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-opab 4107  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-res 4688
This theorem is referenced by:  dfdm2  5218  cofunex2g  6197
  Copyright terms: Public domain W3C validator