Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cocnvcnv2 | GIF version |
Description: A composition is not affected by a double converse of its second argument. (Contributed by NM, 8-Oct-2007.) |
Ref | Expression |
---|---|
cocnvcnv2 | ⊢ (𝐴 ∘ ◡◡𝐵) = (𝐴 ∘ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvcnv2 5074 | . . 3 ⊢ ◡◡𝐵 = (𝐵 ↾ V) | |
2 | 1 | coeq2i 4780 | . 2 ⊢ (𝐴 ∘ ◡◡𝐵) = (𝐴 ∘ (𝐵 ↾ V)) |
3 | resco 5125 | . 2 ⊢ ((𝐴 ∘ 𝐵) ↾ V) = (𝐴 ∘ (𝐵 ↾ V)) | |
4 | relco 5119 | . . 3 ⊢ Rel (𝐴 ∘ 𝐵) | |
5 | dfrel3 5078 | . . 3 ⊢ (Rel (𝐴 ∘ 𝐵) ↔ ((𝐴 ∘ 𝐵) ↾ V) = (𝐴 ∘ 𝐵)) | |
6 | 4, 5 | mpbi 145 | . 2 ⊢ ((𝐴 ∘ 𝐵) ↾ V) = (𝐴 ∘ 𝐵) |
7 | 2, 3, 6 | 3eqtr2i 2202 | 1 ⊢ (𝐴 ∘ ◡◡𝐵) = (𝐴 ∘ 𝐵) |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 Vcvv 2735 ◡ccnv 4619 ↾ cres 4622 ∘ ccom 4624 Rel wrel 4625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-res 4632 |
This theorem is referenced by: dfdm2 5155 cofunex2g 6101 |
Copyright terms: Public domain | W3C validator |