Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cocnvcnv2 GIF version

Theorem cocnvcnv2 5050
 Description: A composition is not affected by a double converse of its second argument. (Contributed by NM, 8-Oct-2007.)
Assertion
Ref Expression
cocnvcnv2 (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem cocnvcnv2
StepHypRef Expression
1 cnvcnv2 4992 . . 3 𝐵 = (𝐵 ↾ V)
21coeq2i 4699 . 2 (𝐴𝐵) = (𝐴 ∘ (𝐵 ↾ V))
3 resco 5043 . 2 ((𝐴𝐵) ↾ V) = (𝐴 ∘ (𝐵 ↾ V))
4 relco 5037 . . 3 Rel (𝐴𝐵)
5 dfrel3 4996 . . 3 (Rel (𝐴𝐵) ↔ ((𝐴𝐵) ↾ V) = (𝐴𝐵))
64, 5mpbi 144 . 2 ((𝐴𝐵) ↾ V) = (𝐴𝐵)
72, 3, 63eqtr2i 2166 1 (𝐴𝐵) = (𝐴𝐵)
 Colors of variables: wff set class Syntax hints:   = wceq 1331  Vcvv 2686  ◡ccnv 4538   ↾ cres 4541   ∘ ccom 4543  Rel wrel 4544 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-res 4551 This theorem is referenced by:  dfdm2  5073  cofunex2g  6010
 Copyright terms: Public domain W3C validator