Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2logb9irr | GIF version |
Description: Example for logbgcd1irr 13965. The logarithm of nine to base two is not rational. Also see 2logb9irrap 13975 which says that it is irrational (in the sense of being apart from any rational number). (Contributed by AV, 29-Dec-2022.) |
Ref | Expression |
---|---|
2logb9irr | ⊢ (2 logb 9) ∈ (ℝ ∖ ℚ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2z 9254 | . . 3 ⊢ 2 ∈ ℤ | |
2 | 9nn 9060 | . . . 4 ⊢ 9 ∈ ℕ | |
3 | 2 | nnzi 9247 | . . 3 ⊢ 9 ∈ ℤ |
4 | 2re 8962 | . . . 4 ⊢ 2 ∈ ℝ | |
5 | 9re 8979 | . . . 4 ⊢ 9 ∈ ℝ | |
6 | 2lt9 9095 | . . . 4 ⊢ 2 < 9 | |
7 | 4, 5, 6 | ltleii 8034 | . . 3 ⊢ 2 ≤ 9 |
8 | eluz2 9507 | . . 3 ⊢ (9 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 9 ∈ ℤ ∧ 2 ≤ 9)) | |
9 | 1, 3, 7, 8 | mpbir3an 1179 | . 2 ⊢ 9 ∈ (ℤ≥‘2) |
10 | uzid 9515 | . . 3 ⊢ (2 ∈ ℤ → 2 ∈ (ℤ≥‘2)) | |
11 | 1, 10 | ax-mp 5 | . 2 ⊢ 2 ∈ (ℤ≥‘2) |
12 | sq3 10586 | . . . . 5 ⊢ (3↑2) = 9 | |
13 | 12 | eqcomi 2179 | . . . 4 ⊢ 9 = (3↑2) |
14 | 13 | oveq1i 5875 | . . 3 ⊢ (9 gcd 2) = ((3↑2) gcd 2) |
15 | 2lt3 9062 | . . . . . 6 ⊢ 2 < 3 | |
16 | 4, 15 | gtneii 8027 | . . . . 5 ⊢ 3 ≠ 2 |
17 | 3prm 12095 | . . . . . 6 ⊢ 3 ∈ ℙ | |
18 | 2prm 12094 | . . . . . 6 ⊢ 2 ∈ ℙ | |
19 | prmrp 12112 | . . . . . 6 ⊢ ((3 ∈ ℙ ∧ 2 ∈ ℙ) → ((3 gcd 2) = 1 ↔ 3 ≠ 2)) | |
20 | 17, 18, 19 | mp2an 426 | . . . . 5 ⊢ ((3 gcd 2) = 1 ↔ 3 ≠ 2) |
21 | 16, 20 | mpbir 146 | . . . 4 ⊢ (3 gcd 2) = 1 |
22 | 3z 9255 | . . . . 5 ⊢ 3 ∈ ℤ | |
23 | 2nn0 9166 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
24 | rpexp1i 12121 | . . . . 5 ⊢ ((3 ∈ ℤ ∧ 2 ∈ ℤ ∧ 2 ∈ ℕ0) → ((3 gcd 2) = 1 → ((3↑2) gcd 2) = 1)) | |
25 | 22, 1, 23, 24 | mp3an 1337 | . . . 4 ⊢ ((3 gcd 2) = 1 → ((3↑2) gcd 2) = 1) |
26 | 21, 25 | ax-mp 5 | . . 3 ⊢ ((3↑2) gcd 2) = 1 |
27 | 14, 26 | eqtri 2196 | . 2 ⊢ (9 gcd 2) = 1 |
28 | logbgcd1irr 13965 | . 2 ⊢ ((9 ∈ (ℤ≥‘2) ∧ 2 ∈ (ℤ≥‘2) ∧ (9 gcd 2) = 1) → (2 logb 9) ∈ (ℝ ∖ ℚ)) | |
29 | 9, 11, 27, 28 | mp3an 1337 | 1 ⊢ (2 logb 9) ∈ (ℝ ∖ ℚ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 ∈ wcel 2146 ≠ wne 2345 ∖ cdif 3124 class class class wbr 3998 ‘cfv 5208 (class class class)co 5865 ℝcr 7785 1c1 7787 ≤ cle 7967 2c2 8943 3c3 8944 9c9 8950 ℕ0cn0 9149 ℤcz 9226 ℤ≥cuz 9501 ℚcq 9592 ↑cexp 10489 gcd cgcd 11910 ℙcprime 12074 logb clogb 13941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 ax-pre-mulext 7904 ax-arch 7905 ax-caucvg 7906 ax-pre-suploc 7907 ax-addf 7908 ax-mulf 7909 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-disj 3976 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-po 4290 df-iso 4291 df-iord 4360 df-on 4362 df-ilim 4363 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-isom 5217 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-of 6073 df-1st 6131 df-2nd 6132 df-recs 6296 df-irdg 6361 df-frec 6382 df-1o 6407 df-2o 6408 df-oadd 6411 df-er 6525 df-map 6640 df-pm 6641 df-en 6731 df-dom 6732 df-fin 6733 df-sup 6973 df-inf 6974 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 df-div 8603 df-inn 8893 df-2 8951 df-3 8952 df-4 8953 df-5 8954 df-6 8955 df-7 8956 df-8 8957 df-9 8958 df-n0 9150 df-z 9227 df-uz 9502 df-q 9593 df-rp 9625 df-xneg 9743 df-xadd 9744 df-ioo 9863 df-ico 9865 df-icc 9866 df-fz 9980 df-fzo 10113 df-fl 10240 df-mod 10293 df-seqfrec 10416 df-exp 10490 df-fac 10674 df-bc 10696 df-ihash 10724 df-shft 10792 df-cj 10819 df-re 10820 df-im 10821 df-rsqrt 10975 df-abs 10976 df-clim 11255 df-sumdc 11330 df-ef 11624 df-e 11625 df-dvds 11763 df-gcd 11911 df-prm 12075 df-rest 12621 df-topgen 12640 df-psmet 13067 df-xmet 13068 df-met 13069 df-bl 13070 df-mopn 13071 df-top 13076 df-topon 13089 df-bases 13121 df-ntr 13176 df-cn 13268 df-cnp 13269 df-tx 13333 df-cncf 13638 df-limced 13705 df-dvap 13706 df-relog 13859 df-rpcxp 13860 df-logb 13942 |
This theorem is referenced by: 2irrexpq 13974 2irrexpqap 13976 |
Copyright terms: Public domain | W3C validator |