ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2logb9irr GIF version

Theorem 2logb9irr 13969
Description: Example for logbgcd1irr 13965. The logarithm of nine to base two is not rational. Also see 2logb9irrap 13975 which says that it is irrational (in the sense of being apart from any rational number). (Contributed by AV, 29-Dec-2022.)
Assertion
Ref Expression
2logb9irr (2 logb 9) ∈ (ℝ ∖ ℚ)

Proof of Theorem 2logb9irr
StepHypRef Expression
1 2z 9254 . . 3 2 ∈ ℤ
2 9nn 9060 . . . 4 9 ∈ ℕ
32nnzi 9247 . . 3 9 ∈ ℤ
4 2re 8962 . . . 4 2 ∈ ℝ
5 9re 8979 . . . 4 9 ∈ ℝ
6 2lt9 9095 . . . 4 2 < 9
74, 5, 6ltleii 8034 . . 3 2 ≤ 9
8 eluz2 9507 . . 3 (9 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 9 ∈ ℤ ∧ 2 ≤ 9))
91, 3, 7, 8mpbir3an 1179 . 2 9 ∈ (ℤ‘2)
10 uzid 9515 . . 3 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
111, 10ax-mp 5 . 2 2 ∈ (ℤ‘2)
12 sq3 10586 . . . . 5 (3↑2) = 9
1312eqcomi 2179 . . . 4 9 = (3↑2)
1413oveq1i 5875 . . 3 (9 gcd 2) = ((3↑2) gcd 2)
15 2lt3 9062 . . . . . 6 2 < 3
164, 15gtneii 8027 . . . . 5 3 ≠ 2
17 3prm 12095 . . . . . 6 3 ∈ ℙ
18 2prm 12094 . . . . . 6 2 ∈ ℙ
19 prmrp 12112 . . . . . 6 ((3 ∈ ℙ ∧ 2 ∈ ℙ) → ((3 gcd 2) = 1 ↔ 3 ≠ 2))
2017, 18, 19mp2an 426 . . . . 5 ((3 gcd 2) = 1 ↔ 3 ≠ 2)
2116, 20mpbir 146 . . . 4 (3 gcd 2) = 1
22 3z 9255 . . . . 5 3 ∈ ℤ
23 2nn0 9166 . . . . 5 2 ∈ ℕ0
24 rpexp1i 12121 . . . . 5 ((3 ∈ ℤ ∧ 2 ∈ ℤ ∧ 2 ∈ ℕ0) → ((3 gcd 2) = 1 → ((3↑2) gcd 2) = 1))
2522, 1, 23, 24mp3an 1337 . . . 4 ((3 gcd 2) = 1 → ((3↑2) gcd 2) = 1)
2621, 25ax-mp 5 . . 3 ((3↑2) gcd 2) = 1
2714, 26eqtri 2196 . 2 (9 gcd 2) = 1
28 logbgcd1irr 13965 . 2 ((9 ∈ (ℤ‘2) ∧ 2 ∈ (ℤ‘2) ∧ (9 gcd 2) = 1) → (2 logb 9) ∈ (ℝ ∖ ℚ))
299, 11, 27, 28mp3an 1337 1 (2 logb 9) ∈ (ℝ ∖ ℚ)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1353  wcel 2146  wne 2345  cdif 3124   class class class wbr 3998  cfv 5208  (class class class)co 5865  cr 7785  1c1 7787  cle 7967  2c2 8943  3c3 8944  9c9 8950  0cn0 9149  cz 9226  cuz 9501  cq 9592  cexp 10489   gcd cgcd 11910  cprime 12074   logb clogb 13941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905  ax-caucvg 7906  ax-pre-suploc 7907  ax-addf 7908  ax-mulf 7909
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-disj 3976  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-isom 5217  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-of 6073  df-1st 6131  df-2nd 6132  df-recs 6296  df-irdg 6361  df-frec 6382  df-1o 6407  df-2o 6408  df-oadd 6411  df-er 6525  df-map 6640  df-pm 6641  df-en 6731  df-dom 6732  df-fin 6733  df-sup 6973  df-inf 6974  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8603  df-inn 8893  df-2 8951  df-3 8952  df-4 8953  df-5 8954  df-6 8955  df-7 8956  df-8 8957  df-9 8958  df-n0 9150  df-z 9227  df-uz 9502  df-q 9593  df-rp 9625  df-xneg 9743  df-xadd 9744  df-ioo 9863  df-ico 9865  df-icc 9866  df-fz 9980  df-fzo 10113  df-fl 10240  df-mod 10293  df-seqfrec 10416  df-exp 10490  df-fac 10674  df-bc 10696  df-ihash 10724  df-shft 10792  df-cj 10819  df-re 10820  df-im 10821  df-rsqrt 10975  df-abs 10976  df-clim 11255  df-sumdc 11330  df-ef 11624  df-e 11625  df-dvds 11763  df-gcd 11911  df-prm 12075  df-rest 12621  df-topgen 12640  df-psmet 13067  df-xmet 13068  df-met 13069  df-bl 13070  df-mopn 13071  df-top 13076  df-topon 13089  df-bases 13121  df-ntr 13176  df-cn 13268  df-cnp 13269  df-tx 13333  df-cncf 13638  df-limced 13705  df-dvap 13706  df-relog 13859  df-rpcxp 13860  df-logb 13942
This theorem is referenced by:  2irrexpq  13974  2irrexpqap  13976
  Copyright terms: Public domain W3C validator