| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2logb9irr | GIF version | ||
| Description: Example for logbgcd1irr 15289. The logarithm of nine to base two is not rational. Also see 2logb9irrap 15299 which says that it is irrational (in the sense of being apart from any rational number). (Contributed by AV, 29-Dec-2022.) |
| Ref | Expression |
|---|---|
| 2logb9irr | ⊢ (2 logb 9) ∈ (ℝ ∖ ℚ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z 9373 | . . 3 ⊢ 2 ∈ ℤ | |
| 2 | 9nn 9178 | . . . 4 ⊢ 9 ∈ ℕ | |
| 3 | 2 | nnzi 9366 | . . 3 ⊢ 9 ∈ ℤ |
| 4 | 2re 9079 | . . . 4 ⊢ 2 ∈ ℝ | |
| 5 | 9re 9096 | . . . 4 ⊢ 9 ∈ ℝ | |
| 6 | 2lt9 9213 | . . . 4 ⊢ 2 < 9 | |
| 7 | 4, 5, 6 | ltleii 8148 | . . 3 ⊢ 2 ≤ 9 |
| 8 | eluz2 9626 | . . 3 ⊢ (9 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 9 ∈ ℤ ∧ 2 ≤ 9)) | |
| 9 | 1, 3, 7, 8 | mpbir3an 1181 | . 2 ⊢ 9 ∈ (ℤ≥‘2) |
| 10 | uzid 9634 | . . 3 ⊢ (2 ∈ ℤ → 2 ∈ (ℤ≥‘2)) | |
| 11 | 1, 10 | ax-mp 5 | . 2 ⊢ 2 ∈ (ℤ≥‘2) |
| 12 | sq3 10747 | . . . . 5 ⊢ (3↑2) = 9 | |
| 13 | 12 | eqcomi 2200 | . . . 4 ⊢ 9 = (3↑2) |
| 14 | 13 | oveq1i 5935 | . . 3 ⊢ (9 gcd 2) = ((3↑2) gcd 2) |
| 15 | 2lt3 9180 | . . . . . 6 ⊢ 2 < 3 | |
| 16 | 4, 15 | gtneii 8141 | . . . . 5 ⊢ 3 ≠ 2 |
| 17 | 3prm 12323 | . . . . . 6 ⊢ 3 ∈ ℙ | |
| 18 | 2prm 12322 | . . . . . 6 ⊢ 2 ∈ ℙ | |
| 19 | prmrp 12340 | . . . . . 6 ⊢ ((3 ∈ ℙ ∧ 2 ∈ ℙ) → ((3 gcd 2) = 1 ↔ 3 ≠ 2)) | |
| 20 | 17, 18, 19 | mp2an 426 | . . . . 5 ⊢ ((3 gcd 2) = 1 ↔ 3 ≠ 2) |
| 21 | 16, 20 | mpbir 146 | . . . 4 ⊢ (3 gcd 2) = 1 |
| 22 | 3z 9374 | . . . . 5 ⊢ 3 ∈ ℤ | |
| 23 | 2nn0 9285 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 24 | rpexp1i 12349 | . . . . 5 ⊢ ((3 ∈ ℤ ∧ 2 ∈ ℤ ∧ 2 ∈ ℕ0) → ((3 gcd 2) = 1 → ((3↑2) gcd 2) = 1)) | |
| 25 | 22, 1, 23, 24 | mp3an 1348 | . . . 4 ⊢ ((3 gcd 2) = 1 → ((3↑2) gcd 2) = 1) |
| 26 | 21, 25 | ax-mp 5 | . . 3 ⊢ ((3↑2) gcd 2) = 1 |
| 27 | 14, 26 | eqtri 2217 | . 2 ⊢ (9 gcd 2) = 1 |
| 28 | logbgcd1irr 15289 | . 2 ⊢ ((9 ∈ (ℤ≥‘2) ∧ 2 ∈ (ℤ≥‘2) ∧ (9 gcd 2) = 1) → (2 logb 9) ∈ (ℝ ∖ ℚ)) | |
| 29 | 9, 11, 27, 28 | mp3an 1348 | 1 ⊢ (2 logb 9) ∈ (ℝ ∖ ℚ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 ∖ cdif 3154 class class class wbr 4034 ‘cfv 5259 (class class class)co 5925 ℝcr 7897 1c1 7899 ≤ cle 8081 2c2 9060 3c3 9061 9c9 9067 ℕ0cn0 9268 ℤcz 9345 ℤ≥cuz 9620 ℚcq 9712 ↑cexp 10649 gcd cgcd 12147 ℙcprime 12302 logb clogb 15265 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-mulrcl 7997 ax-addcom 7998 ax-mulcom 7999 ax-addass 8000 ax-mulass 8001 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-1rid 8005 ax-0id 8006 ax-rnegex 8007 ax-precex 8008 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-apti 8013 ax-pre-ltadd 8014 ax-pre-mulgt0 8015 ax-pre-mulext 8016 ax-arch 8017 ax-caucvg 8018 ax-pre-suploc 8019 ax-addf 8020 ax-mulf 8021 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-disj 4012 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-of 6139 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-frec 6458 df-1o 6483 df-2o 6484 df-oadd 6487 df-er 6601 df-map 6718 df-pm 6719 df-en 6809 df-dom 6810 df-fin 6811 df-sup 7059 df-inf 7060 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-reap 8621 df-ap 8628 df-div 8719 df-inn 9010 df-2 9068 df-3 9069 df-4 9070 df-5 9071 df-6 9072 df-7 9073 df-8 9074 df-9 9075 df-n0 9269 df-z 9346 df-uz 9621 df-q 9713 df-rp 9748 df-xneg 9866 df-xadd 9867 df-ioo 9986 df-ico 9988 df-icc 9989 df-fz 10103 df-fzo 10237 df-fl 10379 df-mod 10434 df-seqfrec 10559 df-exp 10650 df-fac 10837 df-bc 10859 df-ihash 10887 df-shft 10999 df-cj 11026 df-re 11027 df-im 11028 df-rsqrt 11182 df-abs 11183 df-clim 11463 df-sumdc 11538 df-ef 11832 df-e 11833 df-dvds 11972 df-gcd 12148 df-prm 12303 df-rest 12945 df-topgen 12964 df-psmet 14177 df-xmet 14178 df-met 14179 df-bl 14180 df-mopn 14181 df-top 14320 df-topon 14333 df-bases 14365 df-ntr 14418 df-cn 14510 df-cnp 14511 df-tx 14575 df-cncf 14893 df-limced 14978 df-dvap 14979 df-relog 15180 df-rpcxp 15181 df-logb 15266 |
| This theorem is referenced by: 2irrexpq 15298 2irrexpqap 15300 |
| Copyright terms: Public domain | W3C validator |