| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2logb9irr | GIF version | ||
| Description: Example for logbgcd1irr 15649. The logarithm of nine to base two is not rational. Also see 2logb9irrap 15659 which says that it is irrational (in the sense of being apart from any rational number). (Contributed by AV, 29-Dec-2022.) |
| Ref | Expression |
|---|---|
| 2logb9irr | ⊢ (2 logb 9) ∈ (ℝ ∖ ℚ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z 9482 | . . 3 ⊢ 2 ∈ ℤ | |
| 2 | 9nn 9287 | . . . 4 ⊢ 9 ∈ ℕ | |
| 3 | 2 | nnzi 9475 | . . 3 ⊢ 9 ∈ ℤ |
| 4 | 2re 9188 | . . . 4 ⊢ 2 ∈ ℝ | |
| 5 | 9re 9205 | . . . 4 ⊢ 9 ∈ ℝ | |
| 6 | 2lt9 9322 | . . . 4 ⊢ 2 < 9 | |
| 7 | 4, 5, 6 | ltleii 8257 | . . 3 ⊢ 2 ≤ 9 |
| 8 | eluz2 9736 | . . 3 ⊢ (9 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 9 ∈ ℤ ∧ 2 ≤ 9)) | |
| 9 | 1, 3, 7, 8 | mpbir3an 1203 | . 2 ⊢ 9 ∈ (ℤ≥‘2) |
| 10 | uzid 9744 | . . 3 ⊢ (2 ∈ ℤ → 2 ∈ (ℤ≥‘2)) | |
| 11 | 1, 10 | ax-mp 5 | . 2 ⊢ 2 ∈ (ℤ≥‘2) |
| 12 | sq3 10866 | . . . . 5 ⊢ (3↑2) = 9 | |
| 13 | 12 | eqcomi 2233 | . . . 4 ⊢ 9 = (3↑2) |
| 14 | 13 | oveq1i 6017 | . . 3 ⊢ (9 gcd 2) = ((3↑2) gcd 2) |
| 15 | 2lt3 9289 | . . . . . 6 ⊢ 2 < 3 | |
| 16 | 4, 15 | gtneii 8250 | . . . . 5 ⊢ 3 ≠ 2 |
| 17 | 3prm 12658 | . . . . . 6 ⊢ 3 ∈ ℙ | |
| 18 | 2prm 12657 | . . . . . 6 ⊢ 2 ∈ ℙ | |
| 19 | prmrp 12675 | . . . . . 6 ⊢ ((3 ∈ ℙ ∧ 2 ∈ ℙ) → ((3 gcd 2) = 1 ↔ 3 ≠ 2)) | |
| 20 | 17, 18, 19 | mp2an 426 | . . . . 5 ⊢ ((3 gcd 2) = 1 ↔ 3 ≠ 2) |
| 21 | 16, 20 | mpbir 146 | . . . 4 ⊢ (3 gcd 2) = 1 |
| 22 | 3z 9483 | . . . . 5 ⊢ 3 ∈ ℤ | |
| 23 | 2nn0 9394 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 24 | rpexp1i 12684 | . . . . 5 ⊢ ((3 ∈ ℤ ∧ 2 ∈ ℤ ∧ 2 ∈ ℕ0) → ((3 gcd 2) = 1 → ((3↑2) gcd 2) = 1)) | |
| 25 | 22, 1, 23, 24 | mp3an 1371 | . . . 4 ⊢ ((3 gcd 2) = 1 → ((3↑2) gcd 2) = 1) |
| 26 | 21, 25 | ax-mp 5 | . . 3 ⊢ ((3↑2) gcd 2) = 1 |
| 27 | 14, 26 | eqtri 2250 | . 2 ⊢ (9 gcd 2) = 1 |
| 28 | logbgcd1irr 15649 | . 2 ⊢ ((9 ∈ (ℤ≥‘2) ∧ 2 ∈ (ℤ≥‘2) ∧ (9 gcd 2) = 1) → (2 logb 9) ∈ (ℝ ∖ ℚ)) | |
| 29 | 9, 11, 27, 28 | mp3an 1371 | 1 ⊢ (2 logb 9) ∈ (ℝ ∖ ℚ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 ∖ cdif 3194 class class class wbr 4083 ‘cfv 5318 (class class class)co 6007 ℝcr 8006 1c1 8008 ≤ cle 8190 2c2 9169 3c3 9170 9c9 9176 ℕ0cn0 9377 ℤcz 9454 ℤ≥cuz 9730 ℚcq 9822 ↑cexp 10768 gcd cgcd 12482 ℙcprime 12637 logb clogb 15625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 ax-caucvg 8127 ax-pre-suploc 8128 ax-addf 8129 ax-mulf 8130 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-disj 4060 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-of 6224 df-1st 6292 df-2nd 6293 df-recs 6457 df-irdg 6522 df-frec 6543 df-1o 6568 df-2o 6569 df-oadd 6572 df-er 6688 df-map 6805 df-pm 6806 df-en 6896 df-dom 6897 df-fin 6898 df-sup 7159 df-inf 7160 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-z 9455 df-uz 9731 df-q 9823 df-rp 9858 df-xneg 9976 df-xadd 9977 df-ioo 10096 df-ico 10098 df-icc 10099 df-fz 10213 df-fzo 10347 df-fl 10498 df-mod 10553 df-seqfrec 10678 df-exp 10769 df-fac 10956 df-bc 10978 df-ihash 11006 df-shft 11334 df-cj 11361 df-re 11362 df-im 11363 df-rsqrt 11517 df-abs 11518 df-clim 11798 df-sumdc 11873 df-ef 12167 df-e 12168 df-dvds 12307 df-gcd 12483 df-prm 12638 df-rest 13282 df-topgen 13301 df-psmet 14515 df-xmet 14516 df-met 14517 df-bl 14518 df-mopn 14519 df-top 14680 df-topon 14693 df-bases 14725 df-ntr 14778 df-cn 14870 df-cnp 14871 df-tx 14935 df-cncf 15253 df-limced 15338 df-dvap 15339 df-relog 15540 df-rpcxp 15541 df-logb 15626 |
| This theorem is referenced by: 2irrexpq 15658 2irrexpqap 15660 |
| Copyright terms: Public domain | W3C validator |