| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 9lt10 | GIF version | ||
| Description: 9 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 8-Sep-2021.) |
| Ref | Expression |
|---|---|
| 9lt10 | ⊢ 9 < ;10 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9re 9123 | . . 3 ⊢ 9 ∈ ℝ | |
| 2 | 1 | ltp1i 8978 | . 2 ⊢ 9 < (9 + 1) |
| 3 | 9p1e10 9506 | . 2 ⊢ (9 + 1) = ;10 | |
| 4 | 2, 3 | breqtri 4069 | 1 ⊢ 9 < ;10 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4044 (class class class)co 5944 0cc0 7925 1c1 7926 + caddc 7928 < clt 8107 9c9 9094 ;cdc 9504 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-xp 4681 df-iota 5232 df-fv 5279 df-ov 5947 df-pnf 8109 df-mnf 8110 df-ltxr 8112 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-5 9098 df-6 9099 df-7 9100 df-8 9101 df-9 9102 df-dec 9505 |
| This theorem is referenced by: 8lt10 9635 slotsdifplendx 13042 dsndxntsetndx 13056 unifndxntsetndx 13063 imasvalstrd 13102 cnfldstr 14320 setsmsdsg 14952 |
| Copyright terms: Public domain | W3C validator |