Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 9lt10 | GIF version |
Description: 9 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 8-Sep-2021.) |
Ref | Expression |
---|---|
9lt10 | ⊢ 9 < ;10 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9re 8920 | . . 3 ⊢ 9 ∈ ℝ | |
2 | 1 | ltp1i 8776 | . 2 ⊢ 9 < (9 + 1) |
3 | 9p1e10 9297 | . 2 ⊢ (9 + 1) = ;10 | |
4 | 2, 3 | breqtri 3989 | 1 ⊢ 9 < ;10 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 3965 (class class class)co 5824 0cc0 7732 1c1 7733 + caddc 7735 < clt 7912 9c9 8891 ;cdc 9295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4496 ax-cnex 7823 ax-resscn 7824 ax-1cn 7825 ax-1re 7826 ax-icn 7827 ax-addcl 7828 ax-addrcl 7829 ax-mulcl 7830 ax-addcom 7832 ax-mulcom 7833 ax-addass 7834 ax-mulass 7835 ax-distr 7836 ax-i2m1 7837 ax-0lt1 7838 ax-1rid 7839 ax-0id 7840 ax-rnegex 7841 ax-cnre 7843 ax-pre-ltadd 7848 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-xp 4592 df-iota 5135 df-fv 5178 df-ov 5827 df-pnf 7914 df-mnf 7915 df-ltxr 7917 df-inn 8834 df-2 8892 df-3 8893 df-4 8894 df-5 8895 df-6 8896 df-7 8897 df-8 8898 df-9 8899 df-dec 9296 |
This theorem is referenced by: 8lt10 9426 setsmsdsg 12891 |
Copyright terms: Public domain | W3C validator |