![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 4lt9 | GIF version |
Description: 4 is less than 9. (Contributed by Mario Carneiro, 9-Mar-2015.) |
Ref | Expression |
---|---|
4lt9 | ⊢ 4 < 9 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4lt5 8652 | . 2 ⊢ 4 < 5 | |
2 | 5lt9 8677 | . 2 ⊢ 5 < 9 | |
3 | 4re 8560 | . . 3 ⊢ 4 ∈ ℝ | |
4 | 5re 8562 | . . 3 ⊢ 5 ∈ ℝ | |
5 | 9re 8570 | . . 3 ⊢ 9 ∈ ℝ | |
6 | 3, 4, 5 | lttri 7650 | . 2 ⊢ ((4 < 5 ∧ 5 < 9) → 4 < 9) |
7 | 1, 2, 6 | mp2an 418 | 1 ⊢ 4 < 9 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 3851 < clt 7583 4c4 8536 5c5 8537 9c9 8541 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 ax-un 4269 ax-setind 4366 ax-cnex 7497 ax-resscn 7498 ax-1cn 7499 ax-1re 7500 ax-icn 7501 ax-addcl 7502 ax-addrcl 7503 ax-mulcl 7504 ax-addcom 7506 ax-addass 7508 ax-i2m1 7511 ax-0lt1 7512 ax-0id 7514 ax-rnegex 7515 ax-pre-lttrn 7520 ax-pre-ltadd 7522 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-nel 2352 df-ral 2365 df-rex 2366 df-rab 2369 df-v 2622 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-br 3852 df-opab 3906 df-xp 4458 df-iota 4993 df-fv 5036 df-ov 5669 df-pnf 7585 df-mnf 7586 df-ltxr 7588 df-2 8542 df-3 8543 df-4 8544 df-5 8545 df-6 8546 df-7 8547 df-8 8548 df-9 8549 |
This theorem is referenced by: 3lt9 8679 |
Copyright terms: Public domain | W3C validator |