![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > slotsdifplendx | GIF version |
Description: The index of the slot for the distance is not the index of other slots. (Contributed by AV, 11-Nov-2024.) |
Ref | Expression |
---|---|
slotsdifplendx | ⊢ ((*𝑟‘ndx) ≠ (le‘ndx) ∧ (TopSet‘ndx) ≠ (le‘ndx)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4re 8996 | . . . 4 ⊢ 4 ∈ ℝ | |
2 | 4lt10 9519 | . . . 4 ⊢ 4 < ;10 | |
3 | 1, 2 | ltneii 8054 | . . 3 ⊢ 4 ≠ ;10 |
4 | starvndx 12597 | . . . 4 ⊢ (*𝑟‘ndx) = 4 | |
5 | plendx 12655 | . . . 4 ⊢ (le‘ndx) = ;10 | |
6 | 4, 5 | neeq12i 2364 | . . 3 ⊢ ((*𝑟‘ndx) ≠ (le‘ndx) ↔ 4 ≠ ;10) |
7 | 3, 6 | mpbir 146 | . 2 ⊢ (*𝑟‘ndx) ≠ (le‘ndx) |
8 | 9re 9006 | . . . 4 ⊢ 9 ∈ ℝ | |
9 | 9lt10 9514 | . . . 4 ⊢ 9 < ;10 | |
10 | 8, 9 | ltneii 8054 | . . 3 ⊢ 9 ≠ ;10 |
11 | tsetndx 12641 | . . . 4 ⊢ (TopSet‘ndx) = 9 | |
12 | 11, 5 | neeq12i 2364 | . . 3 ⊢ ((TopSet‘ndx) ≠ (le‘ndx) ↔ 9 ≠ ;10) |
13 | 10, 12 | mpbir 146 | . 2 ⊢ (TopSet‘ndx) ≠ (le‘ndx) |
14 | 7, 13 | pm3.2i 272 | 1 ⊢ ((*𝑟‘ndx) ≠ (le‘ndx) ∧ (TopSet‘ndx) ≠ (le‘ndx)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ≠ wne 2347 ‘cfv 5217 0cc0 7811 1c1 7812 4c4 8972 9c9 8977 ;cdc 9384 ndxcnx 12459 *𝑟cstv 12538 TopSetcts 12542 lecple 12543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-addcom 7911 ax-mulcom 7912 ax-addass 7913 ax-mulass 7914 ax-distr 7915 ax-i2m1 7916 ax-0lt1 7917 ax-1rid 7918 ax-0id 7919 ax-rnegex 7920 ax-cnre 7922 ax-pre-ltirr 7923 ax-pre-lttrn 7925 ax-pre-ltadd 7927 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2740 df-sbc 2964 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-iota 5179 df-fun 5219 df-fv 5225 df-ov 5878 df-pnf 7994 df-mnf 7995 df-ltxr 7997 df-inn 8920 df-2 8978 df-3 8979 df-4 8980 df-5 8981 df-6 8982 df-7 8983 df-8 8984 df-9 8985 df-dec 9385 df-ndx 12465 df-slot 12466 df-starv 12551 df-tset 12555 df-ple 12556 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |