ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsmsdsg GIF version

Theorem setsmsdsg 14065
Description: The distance function of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
setsms.x (𝜑𝑋 = (Base‘𝑀))
setsms.d (𝜑𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
setsms.k (𝜑𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
setsmsbasg.m (𝜑𝑀𝑉)
setsmsbasg.d (𝜑 → (MetOpen‘𝐷) ∈ 𝑊)
Assertion
Ref Expression
setsmsdsg (𝜑 → (dist‘𝑀) = (dist‘𝐾))

Proof of Theorem setsmsdsg
StepHypRef Expression
1 setsmsbasg.m . . 3 (𝜑𝑀𝑉)
2 setsmsbasg.d . . 3 (𝜑 → (MetOpen‘𝐷) ∈ 𝑊)
3 dsslid 12673 . . . 4 (dist = Slot (dist‘ndx) ∧ (dist‘ndx) ∈ ℕ)
4 9re 9008 . . . . . 6 9 ∈ ℝ
5 1nn 8932 . . . . . . 7 1 ∈ ℕ
6 2nn0 9195 . . . . . . 7 2 ∈ ℕ0
7 9nn0 9202 . . . . . . 7 9 ∈ ℕ0
8 9lt10 9516 . . . . . . 7 9 < 10
95, 6, 7, 8declti 9423 . . . . . 6 9 < 12
104, 9gtneii 8055 . . . . 5 12 ≠ 9
11 dsndx 12671 . . . . . 6 (dist‘ndx) = 12
12 tsetndx 12646 . . . . . 6 (TopSet‘ndx) = 9
1311, 12neeq12i 2364 . . . . 5 ((dist‘ndx) ≠ (TopSet‘ndx) ↔ 12 ≠ 9)
1410, 13mpbir 146 . . . 4 (dist‘ndx) ≠ (TopSet‘ndx)
15 tsetslid 12648 . . . . 5 (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ)
1615simpri 113 . . . 4 (TopSet‘ndx) ∈ ℕ
173, 14, 16setsslnid 12516 . . 3 ((𝑀𝑉 ∧ (MetOpen‘𝐷) ∈ 𝑊) → (dist‘𝑀) = (dist‘(𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩)))
181, 2, 17syl2anc 411 . 2 (𝜑 → (dist‘𝑀) = (dist‘(𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩)))
19 setsms.k . . 3 (𝜑𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
2019fveq2d 5521 . 2 (𝜑 → (dist‘𝐾) = (dist‘(𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩)))
2118, 20eqtr4d 2213 1 (𝜑 → (dist‘𝑀) = (dist‘𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  wne 2347  cop 3597   × cxp 4626  cres 4630  cfv 5218  (class class class)co 5877  1c1 7814  cn 8921  2c2 8972  9c9 8979  cdc 9386  ndxcnx 12461   sSet csts 12462  Slot cslot 12463  Basecbs 12464  TopSetcts 12544  distcds 12547  MetOpencmopn 13530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929  ax-pre-mulgt0 7930
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-5 8983  df-6 8984  df-7 8985  df-8 8986  df-9 8987  df-n0 9179  df-z 9256  df-dec 9387  df-ndx 12467  df-slot 12468  df-sets 12471  df-tset 12557  df-ds 12560
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator