ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsmsdsg GIF version

Theorem setsmsdsg 12686
Description: The distance function of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
setsms.x (𝜑𝑋 = (Base‘𝑀))
setsms.d (𝜑𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
setsms.k (𝜑𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
setsmsbasg.m (𝜑𝑀𝑉)
setsmsbasg.d (𝜑 → (MetOpen‘𝐷) ∈ 𝑊)
Assertion
Ref Expression
setsmsdsg (𝜑 → (dist‘𝑀) = (dist‘𝐾))

Proof of Theorem setsmsdsg
StepHypRef Expression
1 setsmsbasg.m . . 3 (𝜑𝑀𝑉)
2 setsmsbasg.d . . 3 (𝜑 → (MetOpen‘𝐷) ∈ 𝑊)
3 dsslid 12156 . . . 4 (dist = Slot (dist‘ndx) ∧ (dist‘ndx) ∈ ℕ)
4 9re 8830 . . . . . 6 9 ∈ ℝ
5 1nn 8754 . . . . . . 7 1 ∈ ℕ
6 2nn0 9017 . . . . . . 7 2 ∈ ℕ0
7 9nn0 9024 . . . . . . 7 9 ∈ ℕ0
8 9lt10 9335 . . . . . . 7 9 < 10
95, 6, 7, 8declti 9242 . . . . . 6 9 < 12
104, 9gtneii 7882 . . . . 5 12 ≠ 9
11 dsndx 12154 . . . . . 6 (dist‘ndx) = 12
12 tsetndx 12144 . . . . . 6 (TopSet‘ndx) = 9
1311, 12neeq12i 2326 . . . . 5 ((dist‘ndx) ≠ (TopSet‘ndx) ↔ 12 ≠ 9)
1410, 13mpbir 145 . . . 4 (dist‘ndx) ≠ (TopSet‘ndx)
15 tsetslid 12146 . . . . 5 (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ)
1615simpri 112 . . . 4 (TopSet‘ndx) ∈ ℕ
173, 14, 16setsslnid 12047 . . 3 ((𝑀𝑉 ∧ (MetOpen‘𝐷) ∈ 𝑊) → (dist‘𝑀) = (dist‘(𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩)))
181, 2, 17syl2anc 409 . 2 (𝜑 → (dist‘𝑀) = (dist‘(𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩)))
19 setsms.k . . 3 (𝜑𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
2019fveq2d 5432 . 2 (𝜑 → (dist‘𝐾) = (dist‘(𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩)))
2118, 20eqtr4d 2176 1 (𝜑 → (dist‘𝑀) = (dist‘𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1332  wcel 1481  wne 2309  cop 3534   × cxp 4544  cres 4548  cfv 5130  (class class class)co 5781  1c1 7644  cn 8743  2c2 8794  9c9 8801  cdc 9205  ndxcnx 11993   sSet csts 11994  Slot cslot 11995  Basecbs 11996  TopSetcts 12064  distcds 12067  MetOpencmopn 12191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-mulrcl 7742  ax-addcom 7743  ax-mulcom 7744  ax-addass 7745  ax-mulass 7746  ax-distr 7747  ax-i2m1 7748  ax-0lt1 7749  ax-1rid 7750  ax-0id 7751  ax-rnegex 7752  ax-precex 7753  ax-cnre 7754  ax-pre-ltirr 7755  ax-pre-ltwlin 7756  ax-pre-lttrn 7757  ax-pre-ltadd 7759  ax-pre-mulgt0 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-nul 3368  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-br 3937  df-opab 3997  df-mpt 3998  df-id 4222  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-iota 5095  df-fun 5132  df-fv 5138  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-le 7829  df-sub 7958  df-neg 7959  df-inn 8744  df-2 8802  df-3 8803  df-4 8804  df-5 8805  df-6 8806  df-7 8807  df-8 8808  df-9 8809  df-n0 9001  df-z 9078  df-dec 9206  df-ndx 11999  df-slot 12000  df-sets 12003  df-tset 12077  df-ds 12080
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator