![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > setsmsdsg | GIF version |
Description: The distance function of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
setsms.x | ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) |
setsms.d | ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
setsms.k | ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) |
setsmsbasg.m | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
setsmsbasg.d | ⊢ (𝜑 → (MetOpen‘𝐷) ∈ 𝑊) |
Ref | Expression |
---|---|
setsmsdsg | ⊢ (𝜑 → (dist‘𝑀) = (dist‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsmsbasg.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
2 | setsmsbasg.d | . . 3 ⊢ (𝜑 → (MetOpen‘𝐷) ∈ 𝑊) | |
3 | dsslid 12833 | . . . 4 ⊢ (dist = Slot (dist‘ndx) ∧ (dist‘ndx) ∈ ℕ) | |
4 | 9re 9071 | . . . . . 6 ⊢ 9 ∈ ℝ | |
5 | 1nn 8995 | . . . . . . 7 ⊢ 1 ∈ ℕ | |
6 | 2nn0 9260 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
7 | 9nn0 9267 | . . . . . . 7 ⊢ 9 ∈ ℕ0 | |
8 | 9lt10 9581 | . . . . . . 7 ⊢ 9 < ;10 | |
9 | 5, 6, 7, 8 | declti 9488 | . . . . . 6 ⊢ 9 < ;12 |
10 | 4, 9 | gtneii 8117 | . . . . 5 ⊢ ;12 ≠ 9 |
11 | dsndx 12831 | . . . . . 6 ⊢ (dist‘ndx) = ;12 | |
12 | tsetndx 12806 | . . . . . 6 ⊢ (TopSet‘ndx) = 9 | |
13 | 11, 12 | neeq12i 2381 | . . . . 5 ⊢ ((dist‘ndx) ≠ (TopSet‘ndx) ↔ ;12 ≠ 9) |
14 | 10, 13 | mpbir 146 | . . . 4 ⊢ (dist‘ndx) ≠ (TopSet‘ndx) |
15 | tsetslid 12808 | . . . . 5 ⊢ (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ) | |
16 | 15 | simpri 113 | . . . 4 ⊢ (TopSet‘ndx) ∈ ℕ |
17 | 3, 14, 16 | setsslnid 12673 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ (MetOpen‘𝐷) ∈ 𝑊) → (dist‘𝑀) = (dist‘(𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉))) |
18 | 1, 2, 17 | syl2anc 411 | . 2 ⊢ (𝜑 → (dist‘𝑀) = (dist‘(𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉))) |
19 | setsms.k | . . 3 ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) | |
20 | 19 | fveq2d 5559 | . 2 ⊢ (𝜑 → (dist‘𝐾) = (dist‘(𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉))) |
21 | 18, 20 | eqtr4d 2229 | 1 ⊢ (𝜑 → (dist‘𝑀) = (dist‘𝐾)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 〈cop 3622 × cxp 4658 ↾ cres 4662 ‘cfv 5255 (class class class)co 5919 1c1 7875 ℕcn 8984 2c2 9035 9c9 9042 ;cdc 9451 ndxcnx 12618 sSet csts 12619 Slot cslot 12620 Basecbs 12621 TopSetcts 12704 distcds 12707 MetOpencmopn 14040 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-9 9050 df-n0 9244 df-z 9321 df-dec 9452 df-ndx 12624 df-slot 12625 df-sets 12628 df-tset 12717 df-ds 12720 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |