Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > setsmsdsg | GIF version |
Description: The distance function of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
setsms.x | ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) |
setsms.d | ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
setsms.k | ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) |
setsmsbasg.m | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
setsmsbasg.d | ⊢ (𝜑 → (MetOpen‘𝐷) ∈ 𝑊) |
Ref | Expression |
---|---|
setsmsdsg | ⊢ (𝜑 → (dist‘𝑀) = (dist‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsmsbasg.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
2 | setsmsbasg.d | . . 3 ⊢ (𝜑 → (MetOpen‘𝐷) ∈ 𝑊) | |
3 | dsslid 12555 | . . . 4 ⊢ (dist = Slot (dist‘ndx) ∧ (dist‘ndx) ∈ ℕ) | |
4 | 9re 8944 | . . . . . 6 ⊢ 9 ∈ ℝ | |
5 | 1nn 8868 | . . . . . . 7 ⊢ 1 ∈ ℕ | |
6 | 2nn0 9131 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
7 | 9nn0 9138 | . . . . . . 7 ⊢ 9 ∈ ℕ0 | |
8 | 9lt10 9452 | . . . . . . 7 ⊢ 9 < ;10 | |
9 | 5, 6, 7, 8 | declti 9359 | . . . . . 6 ⊢ 9 < ;12 |
10 | 4, 9 | gtneii 7994 | . . . . 5 ⊢ ;12 ≠ 9 |
11 | dsndx 12553 | . . . . . 6 ⊢ (dist‘ndx) = ;12 | |
12 | tsetndx 12543 | . . . . . 6 ⊢ (TopSet‘ndx) = 9 | |
13 | 11, 12 | neeq12i 2353 | . . . . 5 ⊢ ((dist‘ndx) ≠ (TopSet‘ndx) ↔ ;12 ≠ 9) |
14 | 10, 13 | mpbir 145 | . . . 4 ⊢ (dist‘ndx) ≠ (TopSet‘ndx) |
15 | tsetslid 12545 | . . . . 5 ⊢ (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ) | |
16 | 15 | simpri 112 | . . . 4 ⊢ (TopSet‘ndx) ∈ ℕ |
17 | 3, 14, 16 | setsslnid 12445 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ (MetOpen‘𝐷) ∈ 𝑊) → (dist‘𝑀) = (dist‘(𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉))) |
18 | 1, 2, 17 | syl2anc 409 | . 2 ⊢ (𝜑 → (dist‘𝑀) = (dist‘(𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉))) |
19 | setsms.k | . . 3 ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) | |
20 | 19 | fveq2d 5490 | . 2 ⊢ (𝜑 → (dist‘𝐾) = (dist‘(𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉))) |
21 | 18, 20 | eqtr4d 2201 | 1 ⊢ (𝜑 → (dist‘𝑀) = (dist‘𝐾)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 ≠ wne 2336 〈cop 3579 × cxp 4602 ↾ cres 4606 ‘cfv 5188 (class class class)co 5842 1c1 7754 ℕcn 8857 2c2 8908 9c9 8915 ;cdc 9322 ndxcnx 12391 sSet csts 12392 Slot cslot 12393 Basecbs 12394 TopSetcts 12463 distcds 12466 MetOpencmopn 12625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-5 8919 df-6 8920 df-7 8921 df-8 8922 df-9 8923 df-n0 9115 df-z 9192 df-dec 9323 df-ndx 12397 df-slot 12398 df-sets 12401 df-tset 12476 df-ds 12479 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |