| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > setsmsdsg | GIF version | ||
| Description: The distance function of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| Ref | Expression |
|---|---|
| setsms.x | ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) |
| setsms.d | ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
| setsms.k | ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) |
| setsmsbasg.m | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
| setsmsbasg.d | ⊢ (𝜑 → (MetOpen‘𝐷) ∈ 𝑊) |
| Ref | Expression |
|---|---|
| setsmsdsg | ⊢ (𝜑 → (dist‘𝑀) = (dist‘𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsmsbasg.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
| 2 | setsmsbasg.d | . . 3 ⊢ (𝜑 → (MetOpen‘𝐷) ∈ 𝑊) | |
| 3 | dsslid 13119 | . . . 4 ⊢ (dist = Slot (dist‘ndx) ∧ (dist‘ndx) ∈ ℕ) | |
| 4 | 9re 9138 | . . . . . 6 ⊢ 9 ∈ ℝ | |
| 5 | 1nn 9062 | . . . . . . 7 ⊢ 1 ∈ ℕ | |
| 6 | 2nn0 9327 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
| 7 | 9nn0 9334 | . . . . . . 7 ⊢ 9 ∈ ℕ0 | |
| 8 | 9lt10 9649 | . . . . . . 7 ⊢ 9 < ;10 | |
| 9 | 5, 6, 7, 8 | declti 9556 | . . . . . 6 ⊢ 9 < ;12 |
| 10 | 4, 9 | gtneii 8183 | . . . . 5 ⊢ ;12 ≠ 9 |
| 11 | dsndx 13117 | . . . . . 6 ⊢ (dist‘ndx) = ;12 | |
| 12 | tsetndx 13088 | . . . . . 6 ⊢ (TopSet‘ndx) = 9 | |
| 13 | 11, 12 | neeq12i 2394 | . . . . 5 ⊢ ((dist‘ndx) ≠ (TopSet‘ndx) ↔ ;12 ≠ 9) |
| 14 | 10, 13 | mpbir 146 | . . . 4 ⊢ (dist‘ndx) ≠ (TopSet‘ndx) |
| 15 | tsetslid 13090 | . . . . 5 ⊢ (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ) | |
| 16 | 15 | simpri 113 | . . . 4 ⊢ (TopSet‘ndx) ∈ ℕ |
| 17 | 3, 14, 16 | setsslnid 12954 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ (MetOpen‘𝐷) ∈ 𝑊) → (dist‘𝑀) = (dist‘(𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉))) |
| 18 | 1, 2, 17 | syl2anc 411 | . 2 ⊢ (𝜑 → (dist‘𝑀) = (dist‘(𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉))) |
| 19 | setsms.k | . . 3 ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) | |
| 20 | 19 | fveq2d 5592 | . 2 ⊢ (𝜑 → (dist‘𝐾) = (dist‘(𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉))) |
| 21 | 18, 20 | eqtr4d 2242 | 1 ⊢ (𝜑 → (dist‘𝑀) = (dist‘𝐾)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 〈cop 3640 × cxp 4680 ↾ cres 4684 ‘cfv 5279 (class class class)co 5956 1c1 7941 ℕcn 9051 2c2 9102 9c9 9109 ;cdc 9519 ndxcnx 12899 sSet csts 12900 Slot cslot 12901 Basecbs 12902 TopSetcts 12985 distcds 12988 MetOpencmopn 14373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-mulrcl 8039 ax-addcom 8040 ax-mulcom 8041 ax-addass 8042 ax-mulass 8043 ax-distr 8044 ax-i2m1 8045 ax-0lt1 8046 ax-1rid 8047 ax-0id 8048 ax-rnegex 8049 ax-precex 8050 ax-cnre 8051 ax-pre-ltirr 8052 ax-pre-ltwlin 8053 ax-pre-lttrn 8054 ax-pre-ltadd 8056 ax-pre-mulgt0 8057 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-iota 5240 df-fun 5281 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-pnf 8124 df-mnf 8125 df-xr 8126 df-ltxr 8127 df-le 8128 df-sub 8260 df-neg 8261 df-inn 9052 df-2 9110 df-3 9111 df-4 9112 df-5 9113 df-6 9114 df-7 9115 df-8 9116 df-9 9117 df-n0 9311 df-z 9388 df-dec 9520 df-ndx 12905 df-slot 12906 df-sets 12909 df-tset 12998 df-ds 13001 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |