ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsmsdsg GIF version

Theorem setsmsdsg 14437
Description: The distance function of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
setsms.x (𝜑𝑋 = (Base‘𝑀))
setsms.d (𝜑𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
setsms.k (𝜑𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
setsmsbasg.m (𝜑𝑀𝑉)
setsmsbasg.d (𝜑 → (MetOpen‘𝐷) ∈ 𝑊)
Assertion
Ref Expression
setsmsdsg (𝜑 → (dist‘𝑀) = (dist‘𝐾))

Proof of Theorem setsmsdsg
StepHypRef Expression
1 setsmsbasg.m . . 3 (𝜑𝑀𝑉)
2 setsmsbasg.d . . 3 (𝜑 → (MetOpen‘𝐷) ∈ 𝑊)
3 dsslid 12724 . . . 4 (dist = Slot (dist‘ndx) ∧ (dist‘ndx) ∈ ℕ)
4 9re 9036 . . . . . 6 9 ∈ ℝ
5 1nn 8960 . . . . . . 7 1 ∈ ℕ
6 2nn0 9223 . . . . . . 7 2 ∈ ℕ0
7 9nn0 9230 . . . . . . 7 9 ∈ ℕ0
8 9lt10 9544 . . . . . . 7 9 < 10
95, 6, 7, 8declti 9451 . . . . . 6 9 < 12
104, 9gtneii 8083 . . . . 5 12 ≠ 9
11 dsndx 12722 . . . . . 6 (dist‘ndx) = 12
12 tsetndx 12697 . . . . . 6 (TopSet‘ndx) = 9
1311, 12neeq12i 2377 . . . . 5 ((dist‘ndx) ≠ (TopSet‘ndx) ↔ 12 ≠ 9)
1410, 13mpbir 146 . . . 4 (dist‘ndx) ≠ (TopSet‘ndx)
15 tsetslid 12699 . . . . 5 (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ)
1615simpri 113 . . . 4 (TopSet‘ndx) ∈ ℕ
173, 14, 16setsslnid 12564 . . 3 ((𝑀𝑉 ∧ (MetOpen‘𝐷) ∈ 𝑊) → (dist‘𝑀) = (dist‘(𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩)))
181, 2, 17syl2anc 411 . 2 (𝜑 → (dist‘𝑀) = (dist‘(𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩)))
19 setsms.k . . 3 (𝜑𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
2019fveq2d 5538 . 2 (𝜑 → (dist‘𝐾) = (dist‘(𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩)))
2118, 20eqtr4d 2225 1 (𝜑 → (dist‘𝑀) = (dist‘𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2160  wne 2360  cop 3610   × cxp 4642  cres 4646  cfv 5235  (class class class)co 5896  1c1 7842  cn 8949  2c2 9000  9c9 9007  cdc 9414  ndxcnx 12509   sSet csts 12510  Slot cslot 12511  Basecbs 12512  TopSetcts 12595  distcds 12598  MetOpencmopn 13854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-mulrcl 7940  ax-addcom 7941  ax-mulcom 7942  ax-addass 7943  ax-mulass 7944  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-1rid 7948  ax-0id 7949  ax-rnegex 7950  ax-precex 7951  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-ltadd 7957  ax-pre-mulgt0 7958
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-iota 5196  df-fun 5237  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-inn 8950  df-2 9008  df-3 9009  df-4 9010  df-5 9011  df-6 9012  df-7 9013  df-8 9014  df-9 9015  df-n0 9207  df-z 9284  df-dec 9415  df-ndx 12515  df-slot 12516  df-sets 12519  df-tset 12608  df-ds 12611
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator