Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > setsmsdsg | GIF version |
Description: The distance function of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
setsms.x | ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) |
setsms.d | ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
setsms.k | ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) |
setsmsbasg.m | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
setsmsbasg.d | ⊢ (𝜑 → (MetOpen‘𝐷) ∈ 𝑊) |
Ref | Expression |
---|---|
setsmsdsg | ⊢ (𝜑 → (dist‘𝑀) = (dist‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsmsbasg.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
2 | setsmsbasg.d | . . 3 ⊢ (𝜑 → (MetOpen‘𝐷) ∈ 𝑊) | |
3 | dsslid 12578 | . . . 4 ⊢ (dist = Slot (dist‘ndx) ∧ (dist‘ndx) ∈ ℕ) | |
4 | 9re 8965 | . . . . . 6 ⊢ 9 ∈ ℝ | |
5 | 1nn 8889 | . . . . . . 7 ⊢ 1 ∈ ℕ | |
6 | 2nn0 9152 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
7 | 9nn0 9159 | . . . . . . 7 ⊢ 9 ∈ ℕ0 | |
8 | 9lt10 9473 | . . . . . . 7 ⊢ 9 < ;10 | |
9 | 5, 6, 7, 8 | declti 9380 | . . . . . 6 ⊢ 9 < ;12 |
10 | 4, 9 | gtneii 8015 | . . . . 5 ⊢ ;12 ≠ 9 |
11 | dsndx 12576 | . . . . . 6 ⊢ (dist‘ndx) = ;12 | |
12 | tsetndx 12566 | . . . . . 6 ⊢ (TopSet‘ndx) = 9 | |
13 | 11, 12 | neeq12i 2357 | . . . . 5 ⊢ ((dist‘ndx) ≠ (TopSet‘ndx) ↔ ;12 ≠ 9) |
14 | 10, 13 | mpbir 145 | . . . 4 ⊢ (dist‘ndx) ≠ (TopSet‘ndx) |
15 | tsetslid 12568 | . . . . 5 ⊢ (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ) | |
16 | 15 | simpri 112 | . . . 4 ⊢ (TopSet‘ndx) ∈ ℕ |
17 | 3, 14, 16 | setsslnid 12467 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ (MetOpen‘𝐷) ∈ 𝑊) → (dist‘𝑀) = (dist‘(𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉))) |
18 | 1, 2, 17 | syl2anc 409 | . 2 ⊢ (𝜑 → (dist‘𝑀) = (dist‘(𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉))) |
19 | setsms.k | . . 3 ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) | |
20 | 19 | fveq2d 5500 | . 2 ⊢ (𝜑 → (dist‘𝐾) = (dist‘(𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉))) |
21 | 18, 20 | eqtr4d 2206 | 1 ⊢ (𝜑 → (dist‘𝑀) = (dist‘𝐾)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 ≠ wne 2340 〈cop 3586 × cxp 4609 ↾ cres 4613 ‘cfv 5198 (class class class)co 5853 1c1 7775 ℕcn 8878 2c2 8929 9c9 8936 ;cdc 9343 ndxcnx 12413 sSet csts 12414 Slot cslot 12415 Basecbs 12416 TopSetcts 12486 distcds 12489 MetOpencmopn 12779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-5 8940 df-6 8941 df-7 8942 df-8 8943 df-9 8944 df-n0 9136 df-z 9213 df-dec 9344 df-ndx 12419 df-slot 12420 df-sets 12423 df-tset 12499 df-ds 12502 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |