ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsmsdsg GIF version

Theorem setsmsdsg 14800
Description: The distance function of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
setsms.x (𝜑𝑋 = (Base‘𝑀))
setsms.d (𝜑𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
setsms.k (𝜑𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
setsmsbasg.m (𝜑𝑀𝑉)
setsmsbasg.d (𝜑 → (MetOpen‘𝐷) ∈ 𝑊)
Assertion
Ref Expression
setsmsdsg (𝜑 → (dist‘𝑀) = (dist‘𝐾))

Proof of Theorem setsmsdsg
StepHypRef Expression
1 setsmsbasg.m . . 3 (𝜑𝑀𝑉)
2 setsmsbasg.d . . 3 (𝜑 → (MetOpen‘𝐷) ∈ 𝑊)
3 dsslid 12919 . . . 4 (dist = Slot (dist‘ndx) ∧ (dist‘ndx) ∈ ℕ)
4 9re 9094 . . . . . 6 9 ∈ ℝ
5 1nn 9018 . . . . . . 7 1 ∈ ℕ
6 2nn0 9283 . . . . . . 7 2 ∈ ℕ0
7 9nn0 9290 . . . . . . 7 9 ∈ ℕ0
8 9lt10 9604 . . . . . . 7 9 < 10
95, 6, 7, 8declti 9511 . . . . . 6 9 < 12
104, 9gtneii 8139 . . . . 5 12 ≠ 9
11 dsndx 12917 . . . . . 6 (dist‘ndx) = 12
12 tsetndx 12888 . . . . . 6 (TopSet‘ndx) = 9
1311, 12neeq12i 2384 . . . . 5 ((dist‘ndx) ≠ (TopSet‘ndx) ↔ 12 ≠ 9)
1410, 13mpbir 146 . . . 4 (dist‘ndx) ≠ (TopSet‘ndx)
15 tsetslid 12890 . . . . 5 (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ)
1615simpri 113 . . . 4 (TopSet‘ndx) ∈ ℕ
173, 14, 16setsslnid 12755 . . 3 ((𝑀𝑉 ∧ (MetOpen‘𝐷) ∈ 𝑊) → (dist‘𝑀) = (dist‘(𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩)))
181, 2, 17syl2anc 411 . 2 (𝜑 → (dist‘𝑀) = (dist‘(𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩)))
19 setsms.k . . 3 (𝜑𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
2019fveq2d 5565 . 2 (𝜑 → (dist‘𝐾) = (dist‘(𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩)))
2118, 20eqtr4d 2232 1 (𝜑 → (dist‘𝑀) = (dist‘𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  wne 2367  cop 3626   × cxp 4662  cres 4666  cfv 5259  (class class class)co 5925  1c1 7897  cn 9007  2c2 9058  9c9 9065  cdc 9474  ndxcnx 12700   sSet csts 12701  Slot cslot 12702  Basecbs 12703  TopSetcts 12786  distcds 12789  MetOpencmopn 14173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012  ax-pre-mulgt0 8013
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-n0 9267  df-z 9344  df-dec 9475  df-ndx 12706  df-slot 12707  df-sets 12710  df-tset 12799  df-ds 12802
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator