ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsmsdsg GIF version

Theorem setsmsdsg 13239
Description: The distance function of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
setsms.x (𝜑𝑋 = (Base‘𝑀))
setsms.d (𝜑𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
setsms.k (𝜑𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
setsmsbasg.m (𝜑𝑀𝑉)
setsmsbasg.d (𝜑 → (MetOpen‘𝐷) ∈ 𝑊)
Assertion
Ref Expression
setsmsdsg (𝜑 → (dist‘𝑀) = (dist‘𝐾))

Proof of Theorem setsmsdsg
StepHypRef Expression
1 setsmsbasg.m . . 3 (𝜑𝑀𝑉)
2 setsmsbasg.d . . 3 (𝜑 → (MetOpen‘𝐷) ∈ 𝑊)
3 dsslid 12571 . . . 4 (dist = Slot (dist‘ndx) ∧ (dist‘ndx) ∈ ℕ)
4 9re 8958 . . . . . 6 9 ∈ ℝ
5 1nn 8882 . . . . . . 7 1 ∈ ℕ
6 2nn0 9145 . . . . . . 7 2 ∈ ℕ0
7 9nn0 9152 . . . . . . 7 9 ∈ ℕ0
8 9lt10 9466 . . . . . . 7 9 < 10
95, 6, 7, 8declti 9373 . . . . . 6 9 < 12
104, 9gtneii 8008 . . . . 5 12 ≠ 9
11 dsndx 12569 . . . . . 6 (dist‘ndx) = 12
12 tsetndx 12559 . . . . . 6 (TopSet‘ndx) = 9
1311, 12neeq12i 2357 . . . . 5 ((dist‘ndx) ≠ (TopSet‘ndx) ↔ 12 ≠ 9)
1410, 13mpbir 145 . . . 4 (dist‘ndx) ≠ (TopSet‘ndx)
15 tsetslid 12561 . . . . 5 (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ)
1615simpri 112 . . . 4 (TopSet‘ndx) ∈ ℕ
173, 14, 16setsslnid 12460 . . 3 ((𝑀𝑉 ∧ (MetOpen‘𝐷) ∈ 𝑊) → (dist‘𝑀) = (dist‘(𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩)))
181, 2, 17syl2anc 409 . 2 (𝜑 → (dist‘𝑀) = (dist‘(𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩)))
19 setsms.k . . 3 (𝜑𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
2019fveq2d 5498 . 2 (𝜑 → (dist‘𝐾) = (dist‘(𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩)))
2118, 20eqtr4d 2206 1 (𝜑 → (dist‘𝑀) = (dist‘𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  wne 2340  cop 3584   × cxp 4607  cres 4611  cfv 5196  (class class class)co 5851  1c1 7768  cn 8871  2c2 8922  9c9 8929  cdc 9336  ndxcnx 12406   sSet csts 12407  Slot cslot 12408  Basecbs 12409  TopSetcts 12479  distcds 12482  MetOpencmopn 12744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7858  ax-resscn 7859  ax-1cn 7860  ax-1re 7861  ax-icn 7862  ax-addcl 7863  ax-addrcl 7864  ax-mulcl 7865  ax-mulrcl 7866  ax-addcom 7867  ax-mulcom 7868  ax-addass 7869  ax-mulass 7870  ax-distr 7871  ax-i2m1 7872  ax-0lt1 7873  ax-1rid 7874  ax-0id 7875  ax-rnegex 7876  ax-precex 7877  ax-cnre 7878  ax-pre-ltirr 7879  ax-pre-ltwlin 7880  ax-pre-lttrn 7881  ax-pre-ltadd 7883  ax-pre-mulgt0 7884
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-iota 5158  df-fun 5198  df-fv 5204  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-pnf 7949  df-mnf 7950  df-xr 7951  df-ltxr 7952  df-le 7953  df-sub 8085  df-neg 8086  df-inn 8872  df-2 8930  df-3 8931  df-4 8932  df-5 8933  df-6 8934  df-7 8935  df-8 8936  df-9 8937  df-n0 9129  df-z 9206  df-dec 9337  df-ndx 12412  df-slot 12413  df-sets 12416  df-tset 12492  df-ds 12495
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator