![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > setsmsdsg | GIF version |
Description: The distance function of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
setsms.x | ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) |
setsms.d | ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
setsms.k | ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) |
setsmsbasg.m | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
setsmsbasg.d | ⊢ (𝜑 → (MetOpen‘𝐷) ∈ 𝑊) |
Ref | Expression |
---|---|
setsmsdsg | ⊢ (𝜑 → (dist‘𝑀) = (dist‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsmsbasg.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
2 | setsmsbasg.d | . . 3 ⊢ (𝜑 → (MetOpen‘𝐷) ∈ 𝑊) | |
3 | dsslid 12724 | . . . 4 ⊢ (dist = Slot (dist‘ndx) ∧ (dist‘ndx) ∈ ℕ) | |
4 | 9re 9036 | . . . . . 6 ⊢ 9 ∈ ℝ | |
5 | 1nn 8960 | . . . . . . 7 ⊢ 1 ∈ ℕ | |
6 | 2nn0 9223 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
7 | 9nn0 9230 | . . . . . . 7 ⊢ 9 ∈ ℕ0 | |
8 | 9lt10 9544 | . . . . . . 7 ⊢ 9 < ;10 | |
9 | 5, 6, 7, 8 | declti 9451 | . . . . . 6 ⊢ 9 < ;12 |
10 | 4, 9 | gtneii 8083 | . . . . 5 ⊢ ;12 ≠ 9 |
11 | dsndx 12722 | . . . . . 6 ⊢ (dist‘ndx) = ;12 | |
12 | tsetndx 12697 | . . . . . 6 ⊢ (TopSet‘ndx) = 9 | |
13 | 11, 12 | neeq12i 2377 | . . . . 5 ⊢ ((dist‘ndx) ≠ (TopSet‘ndx) ↔ ;12 ≠ 9) |
14 | 10, 13 | mpbir 146 | . . . 4 ⊢ (dist‘ndx) ≠ (TopSet‘ndx) |
15 | tsetslid 12699 | . . . . 5 ⊢ (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ) | |
16 | 15 | simpri 113 | . . . 4 ⊢ (TopSet‘ndx) ∈ ℕ |
17 | 3, 14, 16 | setsslnid 12564 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ (MetOpen‘𝐷) ∈ 𝑊) → (dist‘𝑀) = (dist‘(𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉))) |
18 | 1, 2, 17 | syl2anc 411 | . 2 ⊢ (𝜑 → (dist‘𝑀) = (dist‘(𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉))) |
19 | setsms.k | . . 3 ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) | |
20 | 19 | fveq2d 5538 | . 2 ⊢ (𝜑 → (dist‘𝐾) = (dist‘(𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉))) |
21 | 18, 20 | eqtr4d 2225 | 1 ⊢ (𝜑 → (dist‘𝑀) = (dist‘𝐾)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 ≠ wne 2360 〈cop 3610 × cxp 4642 ↾ cres 4646 ‘cfv 5235 (class class class)co 5896 1c1 7842 ℕcn 8949 2c2 9000 9c9 9007 ;cdc 9414 ndxcnx 12509 sSet csts 12510 Slot cslot 12511 Basecbs 12512 TopSetcts 12595 distcds 12598 MetOpencmopn 13854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7932 ax-resscn 7933 ax-1cn 7934 ax-1re 7935 ax-icn 7936 ax-addcl 7937 ax-addrcl 7938 ax-mulcl 7939 ax-mulrcl 7940 ax-addcom 7941 ax-mulcom 7942 ax-addass 7943 ax-mulass 7944 ax-distr 7945 ax-i2m1 7946 ax-0lt1 7947 ax-1rid 7948 ax-0id 7949 ax-rnegex 7950 ax-precex 7951 ax-cnre 7952 ax-pre-ltirr 7953 ax-pre-ltwlin 7954 ax-pre-lttrn 7955 ax-pre-ltadd 7957 ax-pre-mulgt0 7958 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-iota 5196 df-fun 5237 df-fv 5243 df-riota 5852 df-ov 5899 df-oprab 5900 df-mpo 5901 df-pnf 8024 df-mnf 8025 df-xr 8026 df-ltxr 8027 df-le 8028 df-sub 8160 df-neg 8161 df-inn 8950 df-2 9008 df-3 9009 df-4 9010 df-5 9011 df-6 9012 df-7 9013 df-8 9014 df-9 9015 df-n0 9207 df-z 9284 df-dec 9415 df-ndx 12515 df-slot 12516 df-sets 12519 df-tset 12608 df-ds 12611 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |