| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sincos2sgn | GIF version | ||
| Description: The signs of the sine and cosine of 2. (Contributed by Paul Chapman, 19-Jan-2008.) |
| Ref | Expression |
|---|---|
| sincos2sgn | ⊢ (0 < (sin‘2) ∧ (cos‘2) < 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 9063 | . . . 4 ⊢ 2 ∈ ℝ | |
| 2 | 2pos 9084 | . . . 4 ⊢ 0 < 2 | |
| 3 | 1 | leidi 8515 | . . . 4 ⊢ 2 ≤ 2 |
| 4 | 0xr 8076 | . . . . 5 ⊢ 0 ∈ ℝ* | |
| 5 | elioc2 10014 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ 2 ∈ ℝ) → (2 ∈ (0(,]2) ↔ (2 ∈ ℝ ∧ 0 < 2 ∧ 2 ≤ 2))) | |
| 6 | 4, 1, 5 | mp2an 426 | . . . 4 ⊢ (2 ∈ (0(,]2) ↔ (2 ∈ ℝ ∧ 0 < 2 ∧ 2 ≤ 2)) |
| 7 | 1, 2, 3, 6 | mpbir3an 1181 | . . 3 ⊢ 2 ∈ (0(,]2) |
| 8 | sin02gt0 11932 | . . 3 ⊢ (2 ∈ (0(,]2) → 0 < (sin‘2)) | |
| 9 | 7, 8 | ax-mp 5 | . 2 ⊢ 0 < (sin‘2) |
| 10 | cos2bnd 11928 | . . . 4 ⊢ (-(7 / 9) < (cos‘2) ∧ (cos‘2) < -(1 / 9)) | |
| 11 | 10 | simpri 113 | . . 3 ⊢ (cos‘2) < -(1 / 9) |
| 12 | 9re 9080 | . . . . 5 ⊢ 9 ∈ ℝ | |
| 13 | 9pos 9097 | . . . . 5 ⊢ 0 < 9 | |
| 14 | 12, 13 | recgt0ii 8937 | . . . 4 ⊢ 0 < (1 / 9) |
| 15 | 12, 13 | gt0ap0ii 8658 | . . . . . 6 ⊢ 9 # 0 |
| 16 | 12, 15 | rerecclapi 8807 | . . . . 5 ⊢ (1 / 9) ∈ ℝ |
| 17 | lt0neg2 8499 | . . . . 5 ⊢ ((1 / 9) ∈ ℝ → (0 < (1 / 9) ↔ -(1 / 9) < 0)) | |
| 18 | 16, 17 | ax-mp 5 | . . . 4 ⊢ (0 < (1 / 9) ↔ -(1 / 9) < 0) |
| 19 | 14, 18 | mpbi 145 | . . 3 ⊢ -(1 / 9) < 0 |
| 20 | recoscl 11889 | . . . . 5 ⊢ (2 ∈ ℝ → (cos‘2) ∈ ℝ) | |
| 21 | 1, 20 | ax-mp 5 | . . . 4 ⊢ (cos‘2) ∈ ℝ |
| 22 | 16 | renegcli 8291 | . . . 4 ⊢ -(1 / 9) ∈ ℝ |
| 23 | 0re 8029 | . . . 4 ⊢ 0 ∈ ℝ | |
| 24 | 21, 22, 23 | lttri 8134 | . . 3 ⊢ (((cos‘2) < -(1 / 9) ∧ -(1 / 9) < 0) → (cos‘2) < 0) |
| 25 | 11, 19, 24 | mp2an 426 | . 2 ⊢ (cos‘2) < 0 |
| 26 | 9, 25 | pm3.2i 272 | 1 ⊢ (0 < (sin‘2) ∧ (cos‘2) < 0) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 980 ∈ wcel 2167 class class class wbr 4034 ‘cfv 5259 (class class class)co 5923 ℝcr 7881 0cc0 7882 1c1 7883 ℝ*cxr 8063 < clt 8064 ≤ cle 8065 -cneg 8201 / cdiv 8702 2c2 9044 7c7 9049 9c9 9051 (,]cioc 9967 sincsin 11812 cosccos 11813 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7973 ax-resscn 7974 ax-1cn 7975 ax-1re 7976 ax-icn 7977 ax-addcl 7978 ax-addrcl 7979 ax-mulcl 7980 ax-mulrcl 7981 ax-addcom 7982 ax-mulcom 7983 ax-addass 7984 ax-mulass 7985 ax-distr 7986 ax-i2m1 7987 ax-0lt1 7988 ax-1rid 7989 ax-0id 7990 ax-rnegex 7991 ax-precex 7992 ax-cnre 7993 ax-pre-ltirr 7994 ax-pre-ltwlin 7995 ax-pre-lttrn 7996 ax-pre-apti 7997 ax-pre-ltadd 7998 ax-pre-mulgt0 7999 ax-pre-mulext 8000 ax-arch 8001 ax-caucvg 8002 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-disj 4012 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-1st 6200 df-2nd 6201 df-recs 6365 df-irdg 6430 df-frec 6451 df-1o 6476 df-oadd 6480 df-er 6594 df-en 6802 df-dom 6803 df-fin 6804 df-sup 7052 df-pnf 8066 df-mnf 8067 df-xr 8068 df-ltxr 8069 df-le 8070 df-sub 8202 df-neg 8203 df-reap 8605 df-ap 8612 df-div 8703 df-inn 8994 df-2 9052 df-3 9053 df-4 9054 df-5 9055 df-6 9056 df-7 9057 df-8 9058 df-9 9059 df-n0 9253 df-z 9330 df-uz 9605 df-q 9697 df-rp 9732 df-ioc 9971 df-ico 9972 df-fz 10087 df-fzo 10221 df-seqfrec 10543 df-exp 10634 df-fac 10821 df-bc 10843 df-ihash 10871 df-shft 10983 df-cj 11010 df-re 11011 df-im 11012 df-rsqrt 11166 df-abs 11167 df-clim 11447 df-sumdc 11522 df-ef 11816 df-sin 11818 df-cos 11819 |
| This theorem is referenced by: sin4lt0 11935 cosz12 15042 |
| Copyright terms: Public domain | W3C validator |