![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1lt9 | GIF version |
Description: 1 is less than 9. (Contributed by NM, 19-Oct-2012.) (Revised by Mario Carneiro, 9-Mar-2015.) |
Ref | Expression |
---|---|
1lt9 | ⊢ 1 < 9 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt2 9123 | . 2 ⊢ 1 < 2 | |
2 | 2lt9 9157 | . 2 ⊢ 2 < 9 | |
3 | 1re 7991 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2re 9024 | . . 3 ⊢ 2 ∈ ℝ | |
5 | 9re 9041 | . . 3 ⊢ 9 ∈ ℝ | |
6 | 3, 4, 5 | lttri 8097 | . 2 ⊢ ((1 < 2 ∧ 2 < 9) → 1 < 9) |
7 | 1, 2, 6 | mp2an 426 | 1 ⊢ 1 < 9 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 4021 1c1 7847 < clt 8027 2c2 9005 9c9 9012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4139 ax-pow 4195 ax-pr 4230 ax-un 4454 ax-setind 4557 ax-cnex 7937 ax-resscn 7938 ax-1cn 7939 ax-1re 7940 ax-icn 7941 ax-addcl 7942 ax-addrcl 7943 ax-mulcl 7944 ax-addcom 7946 ax-addass 7948 ax-i2m1 7951 ax-0lt1 7952 ax-0id 7954 ax-rnegex 7955 ax-pre-lttrn 7960 ax-pre-ltadd 7962 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3595 df-sn 3616 df-pr 3617 df-op 3619 df-uni 3828 df-br 4022 df-opab 4083 df-xp 4653 df-iota 5199 df-fv 5246 df-ov 5903 df-pnf 8029 df-mnf 8030 df-ltxr 8032 df-2 9013 df-3 9014 df-4 9015 df-5 9016 df-6 9017 df-7 9018 df-8 9019 df-9 9020 |
This theorem is referenced by: basendxlttsetndx 12712 eltpsg 14025 setsmsbasg 14464 |
Copyright terms: Public domain | W3C validator |