| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2logb9irrap | GIF version | ||
| Description: Example for logbgcd1irrap 15360. The logarithm of nine to base two is irrational (in the sense of being apart from any rational number). (Contributed by Jim Kingdon, 12-Jul-2024.) |
| Ref | Expression |
|---|---|
| 2logb9irrap | ⊢ (𝑄 ∈ ℚ → (2 logb 9) # 𝑄) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sq3 10762 | . . . . 5 ⊢ (3↑2) = 9 | |
| 2 | 1 | eqcomi 2208 | . . . 4 ⊢ 9 = (3↑2) |
| 3 | 2 | oveq1i 5944 | . . 3 ⊢ (9 gcd 2) = ((3↑2) gcd 2) |
| 4 | 2re 9088 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 5 | 2lt3 9189 | . . . . . 6 ⊢ 2 < 3 | |
| 6 | 4, 5 | gtneii 8150 | . . . . 5 ⊢ 3 ≠ 2 |
| 7 | 3prm 12369 | . . . . . 6 ⊢ 3 ∈ ℙ | |
| 8 | 2prm 12368 | . . . . . 6 ⊢ 2 ∈ ℙ | |
| 9 | prmrp 12386 | . . . . . 6 ⊢ ((3 ∈ ℙ ∧ 2 ∈ ℙ) → ((3 gcd 2) = 1 ↔ 3 ≠ 2)) | |
| 10 | 7, 8, 9 | mp2an 426 | . . . . 5 ⊢ ((3 gcd 2) = 1 ↔ 3 ≠ 2) |
| 11 | 6, 10 | mpbir 146 | . . . 4 ⊢ (3 gcd 2) = 1 |
| 12 | 3z 9383 | . . . . 5 ⊢ 3 ∈ ℤ | |
| 13 | 2z 9382 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 14 | 2nn0 9294 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 15 | rpexp1i 12395 | . . . . 5 ⊢ ((3 ∈ ℤ ∧ 2 ∈ ℤ ∧ 2 ∈ ℕ0) → ((3 gcd 2) = 1 → ((3↑2) gcd 2) = 1)) | |
| 16 | 12, 13, 14, 15 | mp3an 1349 | . . . 4 ⊢ ((3 gcd 2) = 1 → ((3↑2) gcd 2) = 1) |
| 17 | 11, 16 | ax-mp 5 | . . 3 ⊢ ((3↑2) gcd 2) = 1 |
| 18 | 3, 17 | eqtri 2225 | . 2 ⊢ (9 gcd 2) = 1 |
| 19 | 9nn 9187 | . . . . 5 ⊢ 9 ∈ ℕ | |
| 20 | 19 | nnzi 9375 | . . . 4 ⊢ 9 ∈ ℤ |
| 21 | 9re 9105 | . . . . 5 ⊢ 9 ∈ ℝ | |
| 22 | 2lt9 9222 | . . . . 5 ⊢ 2 < 9 | |
| 23 | 4, 21, 22 | ltleii 8157 | . . . 4 ⊢ 2 ≤ 9 |
| 24 | eluz2 9636 | . . . 4 ⊢ (9 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 9 ∈ ℤ ∧ 2 ≤ 9)) | |
| 25 | 13, 20, 23, 24 | mpbir3an 1181 | . . 3 ⊢ 9 ∈ (ℤ≥‘2) |
| 26 | uzid 9644 | . . . 4 ⊢ (2 ∈ ℤ → 2 ∈ (ℤ≥‘2)) | |
| 27 | 13, 26 | ax-mp 5 | . . 3 ⊢ 2 ∈ (ℤ≥‘2) |
| 28 | logbgcd1irrap 15360 | . . 3 ⊢ (((9 ∈ (ℤ≥‘2) ∧ 2 ∈ (ℤ≥‘2)) ∧ ((9 gcd 2) = 1 ∧ 𝑄 ∈ ℚ)) → (2 logb 9) # 𝑄) | |
| 29 | 25, 27, 28 | mpanl12 436 | . 2 ⊢ (((9 gcd 2) = 1 ∧ 𝑄 ∈ ℚ) → (2 logb 9) # 𝑄) |
| 30 | 18, 29 | mpan 424 | 1 ⊢ (𝑄 ∈ ℚ → (2 logb 9) # 𝑄) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1372 ∈ wcel 2175 ≠ wne 2375 class class class wbr 4043 ‘cfv 5268 (class class class)co 5934 1c1 7908 ≤ cle 8090 # cap 8636 2c2 9069 3c3 9070 9c9 9076 ℕ0cn0 9277 ℤcz 9354 ℤ≥cuz 9630 ℚcq 9722 ↑cexp 10664 gcd cgcd 12193 ℙcprime 12348 logb clogb 15333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-mulrcl 8006 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-1rid 8014 ax-0id 8015 ax-rnegex 8016 ax-precex 8017 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-apti 8022 ax-pre-ltadd 8023 ax-pre-mulgt0 8024 ax-pre-mulext 8025 ax-arch 8026 ax-caucvg 8027 ax-pre-suploc 8028 ax-addf 8029 ax-mulf 8030 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-disj 4021 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4338 df-po 4341 df-iso 4342 df-iord 4411 df-on 4413 df-ilim 4414 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-isom 5277 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-of 6148 df-1st 6216 df-2nd 6217 df-recs 6381 df-irdg 6446 df-frec 6467 df-1o 6492 df-2o 6493 df-oadd 6496 df-er 6610 df-map 6727 df-pm 6728 df-en 6818 df-dom 6819 df-fin 6820 df-sup 7068 df-inf 7069 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-reap 8630 df-ap 8637 df-div 8728 df-inn 9019 df-2 9077 df-3 9078 df-4 9079 df-5 9080 df-6 9081 df-7 9082 df-8 9083 df-9 9084 df-n0 9278 df-z 9355 df-uz 9631 df-q 9723 df-rp 9758 df-xneg 9876 df-xadd 9877 df-ioo 9996 df-ico 9998 df-icc 9999 df-fz 10113 df-fzo 10247 df-fl 10394 df-mod 10449 df-seqfrec 10574 df-exp 10665 df-fac 10852 df-bc 10874 df-ihash 10902 df-shft 11045 df-cj 11072 df-re 11073 df-im 11074 df-rsqrt 11228 df-abs 11229 df-clim 11509 df-sumdc 11584 df-ef 11878 df-e 11879 df-dvds 12018 df-gcd 12194 df-prm 12349 df-rest 12991 df-topgen 13010 df-psmet 14223 df-xmet 14224 df-met 14225 df-bl 14226 df-mopn 14227 df-top 14388 df-topon 14401 df-bases 14433 df-ntr 14486 df-cn 14578 df-cnp 14579 df-tx 14643 df-cncf 14961 df-limced 15046 df-dvap 15047 df-relog 15248 df-rpcxp 15249 df-logb 15334 |
| This theorem is referenced by: 2irrexpqap 15368 |
| Copyright terms: Public domain | W3C validator |