| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2logb9irrap | GIF version | ||
| Description: Example for logbgcd1irrap 15290. The logarithm of nine to base two is irrational (in the sense of being apart from any rational number). (Contributed by Jim Kingdon, 12-Jul-2024.) |
| Ref | Expression |
|---|---|
| 2logb9irrap | ⊢ (𝑄 ∈ ℚ → (2 logb 9) # 𝑄) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sq3 10745 | . . . . 5 ⊢ (3↑2) = 9 | |
| 2 | 1 | eqcomi 2200 | . . . 4 ⊢ 9 = (3↑2) |
| 3 | 2 | oveq1i 5935 | . . 3 ⊢ (9 gcd 2) = ((3↑2) gcd 2) |
| 4 | 2re 9077 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 5 | 2lt3 9178 | . . . . . 6 ⊢ 2 < 3 | |
| 6 | 4, 5 | gtneii 8139 | . . . . 5 ⊢ 3 ≠ 2 |
| 7 | 3prm 12321 | . . . . . 6 ⊢ 3 ∈ ℙ | |
| 8 | 2prm 12320 | . . . . . 6 ⊢ 2 ∈ ℙ | |
| 9 | prmrp 12338 | . . . . . 6 ⊢ ((3 ∈ ℙ ∧ 2 ∈ ℙ) → ((3 gcd 2) = 1 ↔ 3 ≠ 2)) | |
| 10 | 7, 8, 9 | mp2an 426 | . . . . 5 ⊢ ((3 gcd 2) = 1 ↔ 3 ≠ 2) |
| 11 | 6, 10 | mpbir 146 | . . . 4 ⊢ (3 gcd 2) = 1 |
| 12 | 3z 9372 | . . . . 5 ⊢ 3 ∈ ℤ | |
| 13 | 2z 9371 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 14 | 2nn0 9283 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 15 | rpexp1i 12347 | . . . . 5 ⊢ ((3 ∈ ℤ ∧ 2 ∈ ℤ ∧ 2 ∈ ℕ0) → ((3 gcd 2) = 1 → ((3↑2) gcd 2) = 1)) | |
| 16 | 12, 13, 14, 15 | mp3an 1348 | . . . 4 ⊢ ((3 gcd 2) = 1 → ((3↑2) gcd 2) = 1) |
| 17 | 11, 16 | ax-mp 5 | . . 3 ⊢ ((3↑2) gcd 2) = 1 |
| 18 | 3, 17 | eqtri 2217 | . 2 ⊢ (9 gcd 2) = 1 |
| 19 | 9nn 9176 | . . . . 5 ⊢ 9 ∈ ℕ | |
| 20 | 19 | nnzi 9364 | . . . 4 ⊢ 9 ∈ ℤ |
| 21 | 9re 9094 | . . . . 5 ⊢ 9 ∈ ℝ | |
| 22 | 2lt9 9211 | . . . . 5 ⊢ 2 < 9 | |
| 23 | 4, 21, 22 | ltleii 8146 | . . . 4 ⊢ 2 ≤ 9 |
| 24 | eluz2 9624 | . . . 4 ⊢ (9 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 9 ∈ ℤ ∧ 2 ≤ 9)) | |
| 25 | 13, 20, 23, 24 | mpbir3an 1181 | . . 3 ⊢ 9 ∈ (ℤ≥‘2) |
| 26 | uzid 9632 | . . . 4 ⊢ (2 ∈ ℤ → 2 ∈ (ℤ≥‘2)) | |
| 27 | 13, 26 | ax-mp 5 | . . 3 ⊢ 2 ∈ (ℤ≥‘2) |
| 28 | logbgcd1irrap 15290 | . . 3 ⊢ (((9 ∈ (ℤ≥‘2) ∧ 2 ∈ (ℤ≥‘2)) ∧ ((9 gcd 2) = 1 ∧ 𝑄 ∈ ℚ)) → (2 logb 9) # 𝑄) | |
| 29 | 25, 27, 28 | mpanl12 436 | . 2 ⊢ (((9 gcd 2) = 1 ∧ 𝑄 ∈ ℚ) → (2 logb 9) # 𝑄) |
| 30 | 18, 29 | mpan 424 | 1 ⊢ (𝑄 ∈ ℚ → (2 logb 9) # 𝑄) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 class class class wbr 4034 ‘cfv 5259 (class class class)co 5925 1c1 7897 ≤ cle 8079 # cap 8625 2c2 9058 3c3 9059 9c9 9065 ℕ0cn0 9266 ℤcz 9343 ℤ≥cuz 9618 ℚcq 9710 ↑cexp 10647 gcd cgcd 12145 ℙcprime 12300 logb clogb 15263 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 ax-pre-suploc 8017 ax-addf 8018 ax-mulf 8019 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-disj 4012 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-of 6139 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-frec 6458 df-1o 6483 df-2o 6484 df-oadd 6487 df-er 6601 df-map 6718 df-pm 6719 df-en 6809 df-dom 6810 df-fin 6811 df-sup 7059 df-inf 7060 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 df-9 9073 df-n0 9267 df-z 9344 df-uz 9619 df-q 9711 df-rp 9746 df-xneg 9864 df-xadd 9865 df-ioo 9984 df-ico 9986 df-icc 9987 df-fz 10101 df-fzo 10235 df-fl 10377 df-mod 10432 df-seqfrec 10557 df-exp 10648 df-fac 10835 df-bc 10857 df-ihash 10885 df-shft 10997 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-clim 11461 df-sumdc 11536 df-ef 11830 df-e 11831 df-dvds 11970 df-gcd 12146 df-prm 12301 df-rest 12943 df-topgen 12962 df-psmet 14175 df-xmet 14176 df-met 14177 df-bl 14178 df-mopn 14179 df-top 14318 df-topon 14331 df-bases 14363 df-ntr 14416 df-cn 14508 df-cnp 14509 df-tx 14573 df-cncf 14891 df-limced 14976 df-dvap 14977 df-relog 15178 df-rpcxp 15179 df-logb 15264 |
| This theorem is referenced by: 2irrexpqap 15298 |
| Copyright terms: Public domain | W3C validator |