| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2logb9irrap | GIF version | ||
| Description: Example for logbgcd1irrap 15638. The logarithm of nine to base two is irrational (in the sense of being apart from any rational number). (Contributed by Jim Kingdon, 12-Jul-2024.) |
| Ref | Expression |
|---|---|
| 2logb9irrap | ⊢ (𝑄 ∈ ℚ → (2 logb 9) # 𝑄) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sq3 10853 | . . . . 5 ⊢ (3↑2) = 9 | |
| 2 | 1 | eqcomi 2233 | . . . 4 ⊢ 9 = (3↑2) |
| 3 | 2 | oveq1i 6010 | . . 3 ⊢ (9 gcd 2) = ((3↑2) gcd 2) |
| 4 | 2re 9176 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 5 | 2lt3 9277 | . . . . . 6 ⊢ 2 < 3 | |
| 6 | 4, 5 | gtneii 8238 | . . . . 5 ⊢ 3 ≠ 2 |
| 7 | 3prm 12645 | . . . . . 6 ⊢ 3 ∈ ℙ | |
| 8 | 2prm 12644 | . . . . . 6 ⊢ 2 ∈ ℙ | |
| 9 | prmrp 12662 | . . . . . 6 ⊢ ((3 ∈ ℙ ∧ 2 ∈ ℙ) → ((3 gcd 2) = 1 ↔ 3 ≠ 2)) | |
| 10 | 7, 8, 9 | mp2an 426 | . . . . 5 ⊢ ((3 gcd 2) = 1 ↔ 3 ≠ 2) |
| 11 | 6, 10 | mpbir 146 | . . . 4 ⊢ (3 gcd 2) = 1 |
| 12 | 3z 9471 | . . . . 5 ⊢ 3 ∈ ℤ | |
| 13 | 2z 9470 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 14 | 2nn0 9382 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 15 | rpexp1i 12671 | . . . . 5 ⊢ ((3 ∈ ℤ ∧ 2 ∈ ℤ ∧ 2 ∈ ℕ0) → ((3 gcd 2) = 1 → ((3↑2) gcd 2) = 1)) | |
| 16 | 12, 13, 14, 15 | mp3an 1371 | . . . 4 ⊢ ((3 gcd 2) = 1 → ((3↑2) gcd 2) = 1) |
| 17 | 11, 16 | ax-mp 5 | . . 3 ⊢ ((3↑2) gcd 2) = 1 |
| 18 | 3, 17 | eqtri 2250 | . 2 ⊢ (9 gcd 2) = 1 |
| 19 | 9nn 9275 | . . . . 5 ⊢ 9 ∈ ℕ | |
| 20 | 19 | nnzi 9463 | . . . 4 ⊢ 9 ∈ ℤ |
| 21 | 9re 9193 | . . . . 5 ⊢ 9 ∈ ℝ | |
| 22 | 2lt9 9310 | . . . . 5 ⊢ 2 < 9 | |
| 23 | 4, 21, 22 | ltleii 8245 | . . . 4 ⊢ 2 ≤ 9 |
| 24 | eluz2 9724 | . . . 4 ⊢ (9 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 9 ∈ ℤ ∧ 2 ≤ 9)) | |
| 25 | 13, 20, 23, 24 | mpbir3an 1203 | . . 3 ⊢ 9 ∈ (ℤ≥‘2) |
| 26 | uzid 9732 | . . . 4 ⊢ (2 ∈ ℤ → 2 ∈ (ℤ≥‘2)) | |
| 27 | 13, 26 | ax-mp 5 | . . 3 ⊢ 2 ∈ (ℤ≥‘2) |
| 28 | logbgcd1irrap 15638 | . . 3 ⊢ (((9 ∈ (ℤ≥‘2) ∧ 2 ∈ (ℤ≥‘2)) ∧ ((9 gcd 2) = 1 ∧ 𝑄 ∈ ℚ)) → (2 logb 9) # 𝑄) | |
| 29 | 25, 27, 28 | mpanl12 436 | . 2 ⊢ (((9 gcd 2) = 1 ∧ 𝑄 ∈ ℚ) → (2 logb 9) # 𝑄) |
| 30 | 18, 29 | mpan 424 | 1 ⊢ (𝑄 ∈ ℚ → (2 logb 9) # 𝑄) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 class class class wbr 4082 ‘cfv 5317 (class class class)co 6000 1c1 7996 ≤ cle 8178 # cap 8724 2c2 9157 3c3 9158 9c9 9164 ℕ0cn0 9365 ℤcz 9442 ℤ≥cuz 9718 ℚcq 9810 ↑cexp 10755 gcd cgcd 12469 ℙcprime 12624 logb clogb 15611 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 ax-caucvg 8115 ax-pre-suploc 8116 ax-addf 8117 ax-mulf 8118 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-disj 4059 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-isom 5326 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-of 6216 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-frec 6535 df-1o 6560 df-2o 6561 df-oadd 6564 df-er 6678 df-map 6795 df-pm 6796 df-en 6886 df-dom 6887 df-fin 6888 df-sup 7147 df-inf 7148 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-9 9172 df-n0 9366 df-z 9443 df-uz 9719 df-q 9811 df-rp 9846 df-xneg 9964 df-xadd 9965 df-ioo 10084 df-ico 10086 df-icc 10087 df-fz 10201 df-fzo 10335 df-fl 10485 df-mod 10540 df-seqfrec 10665 df-exp 10756 df-fac 10943 df-bc 10965 df-ihash 10993 df-shft 11321 df-cj 11348 df-re 11349 df-im 11350 df-rsqrt 11504 df-abs 11505 df-clim 11785 df-sumdc 11860 df-ef 12154 df-e 12155 df-dvds 12294 df-gcd 12470 df-prm 12625 df-rest 13269 df-topgen 13288 df-psmet 14501 df-xmet 14502 df-met 14503 df-bl 14504 df-mopn 14505 df-top 14666 df-topon 14679 df-bases 14711 df-ntr 14764 df-cn 14856 df-cnp 14857 df-tx 14921 df-cncf 15239 df-limced 15324 df-dvap 15325 df-relog 15526 df-rpcxp 15527 df-logb 15612 |
| This theorem is referenced by: 2irrexpqap 15646 |
| Copyright terms: Public domain | W3C validator |