| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8lt10 | GIF version | ||
| Description: 8 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 8-Sep-2021.) |
| Ref | Expression |
|---|---|
| 8lt10 | ⊢ 8 < ;10 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8lt9 9304 | . 2 ⊢ 8 < 9 | |
| 2 | 9lt10 9704 | . 2 ⊢ 9 < ;10 | |
| 3 | 8re 9191 | . . 3 ⊢ 8 ∈ ℝ | |
| 4 | 9re 9193 | . . 3 ⊢ 9 ∈ ℝ | |
| 5 | 10re 9592 | . . 3 ⊢ ;10 ∈ ℝ | |
| 6 | 3, 4, 5 | lttri 8247 | . 2 ⊢ ((8 < 9 ∧ 9 < ;10) → 8 < ;10) |
| 7 | 1, 2, 6 | mp2an 426 | 1 ⊢ 8 < ;10 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4082 0cc0 7995 1c1 7996 < clt 8177 8c8 9163 9c9 9164 ;cdc 9574 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-xp 4724 df-iota 5277 df-fv 5325 df-ov 6003 df-pnf 8179 df-mnf 8180 df-ltxr 8182 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-9 9172 df-dec 9575 |
| This theorem is referenced by: 7lt10 9706 slotsdnscsi 13251 |
| Copyright terms: Public domain | W3C validator |