ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fz0fzelfz0 GIF version

Theorem fz0fzelfz0 9935
Description: If a member of a finite set of sequential integers with a lower bound being a member of a finite set of sequential nonnegative integers with the same upper bound, this member is also a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 21-Apr-2018.)
Assertion
Ref Expression
fz0fzelfz0 ((𝑁 ∈ (0...𝑅) ∧ 𝑀 ∈ (𝑁...𝑅)) → 𝑀 ∈ (0...𝑅))

Proof of Theorem fz0fzelfz0
StepHypRef Expression
1 elfz2nn0 9923 . . . 4 (𝑁 ∈ (0...𝑅) ↔ (𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅))
2 elfz2 9828 . . . . . 6 (𝑀 ∈ (𝑁...𝑅) ↔ ((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁𝑀𝑀𝑅)))
3 simplr 520 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0𝑀 ∈ ℤ) ∧ 𝑁𝑀) → 𝑀 ∈ ℤ)
4 0red 7791 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ0𝑀 ∈ ℤ) → 0 ∈ ℝ)
5 nn0re 9010 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
65adantr 274 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ0𝑀 ∈ ℤ) → 𝑁 ∈ ℝ)
7 zre 9082 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
87adantl 275 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ0𝑀 ∈ ℤ) → 𝑀 ∈ ℝ)
94, 6, 83jca 1162 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ0𝑀 ∈ ℤ) → (0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
109adantr 274 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0𝑀 ∈ ℤ) ∧ 𝑁𝑀) → (0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
11 nn0ge0 9026 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
1211adantr 274 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ0𝑀 ∈ ℤ) → 0 ≤ 𝑁)
1312anim1i 338 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0𝑀 ∈ ℤ) ∧ 𝑁𝑀) → (0 ≤ 𝑁𝑁𝑀))
14 letr 7871 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((0 ≤ 𝑁𝑁𝑀) → 0 ≤ 𝑀))
1510, 13, 14sylc 62 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0𝑀 ∈ ℤ) ∧ 𝑁𝑀) → 0 ≤ 𝑀)
16 elnn0z 9091 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀))
173, 15, 16sylanbrc 414 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0𝑀 ∈ ℤ) ∧ 𝑁𝑀) → 𝑀 ∈ ℕ0)
1817exp31 362 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → (𝑀 ∈ ℤ → (𝑁𝑀𝑀 ∈ ℕ0)))
1918com23 78 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁𝑀 → (𝑀 ∈ ℤ → 𝑀 ∈ ℕ0)))
20193ad2ant1 1003 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → (𝑁𝑀 → (𝑀 ∈ ℤ → 𝑀 ∈ ℕ0)))
2120com13 80 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → (𝑁𝑀 → ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → 𝑀 ∈ ℕ0)))
2221adantrd 277 . . . . . . . . . . 11 (𝑀 ∈ ℤ → ((𝑁𝑀𝑀𝑅) → ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → 𝑀 ∈ ℕ0)))
23223ad2ant3 1005 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁𝑀𝑀𝑅) → ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → 𝑀 ∈ ℕ0)))
2423imp 123 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁𝑀𝑀𝑅)) → ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → 𝑀 ∈ ℕ0))
2524imp 123 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁𝑀𝑀𝑅)) ∧ (𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅)) → 𝑀 ∈ ℕ0)
26 simpr2 989 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁𝑀𝑀𝑅)) ∧ (𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅)) → 𝑅 ∈ ℕ0)
27 simplrr 526 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁𝑀𝑀𝑅)) ∧ (𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅)) → 𝑀𝑅)
2825, 26, 273jca 1162 . . . . . . 7 ((((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁𝑀𝑀𝑅)) ∧ (𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅)) → (𝑀 ∈ ℕ0𝑅 ∈ ℕ0𝑀𝑅))
2928ex 114 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁𝑀𝑀𝑅)) → ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → (𝑀 ∈ ℕ0𝑅 ∈ ℕ0𝑀𝑅)))
302, 29sylbi 120 . . . . 5 (𝑀 ∈ (𝑁...𝑅) → ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → (𝑀 ∈ ℕ0𝑅 ∈ ℕ0𝑀𝑅)))
3130com12 30 . . . 4 ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → (𝑀 ∈ (𝑁...𝑅) → (𝑀 ∈ ℕ0𝑅 ∈ ℕ0𝑀𝑅)))
321, 31sylbi 120 . . 3 (𝑁 ∈ (0...𝑅) → (𝑀 ∈ (𝑁...𝑅) → (𝑀 ∈ ℕ0𝑅 ∈ ℕ0𝑀𝑅)))
3332imp 123 . 2 ((𝑁 ∈ (0...𝑅) ∧ 𝑀 ∈ (𝑁...𝑅)) → (𝑀 ∈ ℕ0𝑅 ∈ ℕ0𝑀𝑅))
34 elfz2nn0 9923 . 2 (𝑀 ∈ (0...𝑅) ↔ (𝑀 ∈ ℕ0𝑅 ∈ ℕ0𝑀𝑅))
3533, 34sylibr 133 1 ((𝑁 ∈ (0...𝑅) ∧ 𝑀 ∈ (𝑁...𝑅)) → 𝑀 ∈ (0...𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 963  wcel 1481   class class class wbr 3937  (class class class)co 5782  cr 7643  0cc0 7644  cle 7825  0cn0 9001  cz 9078  ...cfz 9821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-fz 9822
This theorem is referenced by:  fz0fzdiffz0  9938
  Copyright terms: Public domain W3C validator