ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fz0fzelfz0 GIF version

Theorem fz0fzelfz0 10036
Description: If a member of a finite set of sequential integers with a lower bound being a member of a finite set of sequential nonnegative integers with the same upper bound, this member is also a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 21-Apr-2018.)
Assertion
Ref Expression
fz0fzelfz0 ((𝑁 ∈ (0...𝑅) ∧ 𝑀 ∈ (𝑁...𝑅)) → 𝑀 ∈ (0...𝑅))

Proof of Theorem fz0fzelfz0
StepHypRef Expression
1 elfz2nn0 10021 . . . 4 (𝑁 ∈ (0...𝑅) ↔ (𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅))
2 elfz2 9926 . . . . . 6 (𝑀 ∈ (𝑁...𝑅) ↔ ((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁𝑀𝑀𝑅)))
3 simplr 520 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0𝑀 ∈ ℤ) ∧ 𝑁𝑀) → 𝑀 ∈ ℤ)
4 0red 7882 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ0𝑀 ∈ ℤ) → 0 ∈ ℝ)
5 nn0re 9105 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
65adantr 274 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ0𝑀 ∈ ℤ) → 𝑁 ∈ ℝ)
7 zre 9177 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
87adantl 275 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ0𝑀 ∈ ℤ) → 𝑀 ∈ ℝ)
94, 6, 83jca 1162 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ0𝑀 ∈ ℤ) → (0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
109adantr 274 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0𝑀 ∈ ℤ) ∧ 𝑁𝑀) → (0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
11 nn0ge0 9121 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
1211adantr 274 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ0𝑀 ∈ ℤ) → 0 ≤ 𝑁)
1312anim1i 338 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0𝑀 ∈ ℤ) ∧ 𝑁𝑀) → (0 ≤ 𝑁𝑁𝑀))
14 letr 7963 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((0 ≤ 𝑁𝑁𝑀) → 0 ≤ 𝑀))
1510, 13, 14sylc 62 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0𝑀 ∈ ℤ) ∧ 𝑁𝑀) → 0 ≤ 𝑀)
16 elnn0z 9186 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀))
173, 15, 16sylanbrc 414 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0𝑀 ∈ ℤ) ∧ 𝑁𝑀) → 𝑀 ∈ ℕ0)
1817exp31 362 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → (𝑀 ∈ ℤ → (𝑁𝑀𝑀 ∈ ℕ0)))
1918com23 78 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁𝑀 → (𝑀 ∈ ℤ → 𝑀 ∈ ℕ0)))
20193ad2ant1 1003 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → (𝑁𝑀 → (𝑀 ∈ ℤ → 𝑀 ∈ ℕ0)))
2120com13 80 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → (𝑁𝑀 → ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → 𝑀 ∈ ℕ0)))
2221adantrd 277 . . . . . . . . . . 11 (𝑀 ∈ ℤ → ((𝑁𝑀𝑀𝑅) → ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → 𝑀 ∈ ℕ0)))
23223ad2ant3 1005 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁𝑀𝑀𝑅) → ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → 𝑀 ∈ ℕ0)))
2423imp 123 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁𝑀𝑀𝑅)) → ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → 𝑀 ∈ ℕ0))
2524imp 123 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁𝑀𝑀𝑅)) ∧ (𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅)) → 𝑀 ∈ ℕ0)
26 simpr2 989 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁𝑀𝑀𝑅)) ∧ (𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅)) → 𝑅 ∈ ℕ0)
27 simplrr 526 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁𝑀𝑀𝑅)) ∧ (𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅)) → 𝑀𝑅)
2825, 26, 273jca 1162 . . . . . . 7 ((((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁𝑀𝑀𝑅)) ∧ (𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅)) → (𝑀 ∈ ℕ0𝑅 ∈ ℕ0𝑀𝑅))
2928ex 114 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁𝑀𝑀𝑅)) → ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → (𝑀 ∈ ℕ0𝑅 ∈ ℕ0𝑀𝑅)))
302, 29sylbi 120 . . . . 5 (𝑀 ∈ (𝑁...𝑅) → ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → (𝑀 ∈ ℕ0𝑅 ∈ ℕ0𝑀𝑅)))
3130com12 30 . . . 4 ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → (𝑀 ∈ (𝑁...𝑅) → (𝑀 ∈ ℕ0𝑅 ∈ ℕ0𝑀𝑅)))
321, 31sylbi 120 . . 3 (𝑁 ∈ (0...𝑅) → (𝑀 ∈ (𝑁...𝑅) → (𝑀 ∈ ℕ0𝑅 ∈ ℕ0𝑀𝑅)))
3332imp 123 . 2 ((𝑁 ∈ (0...𝑅) ∧ 𝑀 ∈ (𝑁...𝑅)) → (𝑀 ∈ ℕ0𝑅 ∈ ℕ0𝑀𝑅))
34 elfz2nn0 10021 . 2 (𝑀 ∈ (0...𝑅) ↔ (𝑀 ∈ ℕ0𝑅 ∈ ℕ0𝑀𝑅))
3533, 34sylibr 133 1 ((𝑁 ∈ (0...𝑅) ∧ 𝑀 ∈ (𝑁...𝑅)) → 𝑀 ∈ (0...𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 963  wcel 2128   class class class wbr 3967  (class class class)co 5827  cr 7734  0cc0 7735  cle 7916  0cn0 9096  cz 9173  ...cfz 9919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4085  ax-pow 4138  ax-pr 4172  ax-un 4396  ax-setind 4499  ax-cnex 7826  ax-resscn 7827  ax-1cn 7828  ax-1re 7829  ax-icn 7830  ax-addcl 7831  ax-addrcl 7832  ax-mulcl 7833  ax-addcom 7835  ax-addass 7837  ax-distr 7839  ax-i2m1 7840  ax-0lt1 7841  ax-0id 7843  ax-rnegex 7844  ax-cnre 7846  ax-pre-ltirr 7847  ax-pre-ltwlin 7848  ax-pre-lttrn 7849  ax-pre-ltadd 7851
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-br 3968  df-opab 4029  df-mpt 4030  df-id 4256  df-xp 4595  df-rel 4596  df-cnv 4597  df-co 4598  df-dm 4599  df-rn 4600  df-res 4601  df-ima 4602  df-iota 5138  df-fun 5175  df-fn 5176  df-f 5177  df-fv 5181  df-riota 5783  df-ov 5830  df-oprab 5831  df-mpo 5832  df-pnf 7917  df-mnf 7918  df-xr 7919  df-ltxr 7920  df-le 7921  df-sub 8053  df-neg 8054  df-inn 8840  df-n0 9097  df-z 9174  df-uz 9446  df-fz 9920
This theorem is referenced by:  fz0fzdiffz0  10039
  Copyright terms: Public domain W3C validator