ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fz0fzelfz0 GIF version

Theorem fz0fzelfz0 10157
Description: If a member of a finite set of sequential integers with a lower bound being a member of a finite set of sequential nonnegative integers with the same upper bound, this member is also a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 21-Apr-2018.)
Assertion
Ref Expression
fz0fzelfz0 ((𝑁 ∈ (0...𝑅) ∧ 𝑀 ∈ (𝑁...𝑅)) → 𝑀 ∈ (0...𝑅))

Proof of Theorem fz0fzelfz0
StepHypRef Expression
1 elfz2nn0 10142 . . . 4 (𝑁 ∈ (0...𝑅) ↔ (𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅))
2 elfz2 10045 . . . . . 6 (𝑀 ∈ (𝑁...𝑅) ↔ ((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁𝑀𝑀𝑅)))
3 simplr 528 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0𝑀 ∈ ℤ) ∧ 𝑁𝑀) → 𝑀 ∈ ℤ)
4 0red 7988 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ0𝑀 ∈ ℤ) → 0 ∈ ℝ)
5 nn0re 9215 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
65adantr 276 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ0𝑀 ∈ ℤ) → 𝑁 ∈ ℝ)
7 zre 9287 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
87adantl 277 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ0𝑀 ∈ ℤ) → 𝑀 ∈ ℝ)
94, 6, 83jca 1179 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ0𝑀 ∈ ℤ) → (0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
109adantr 276 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0𝑀 ∈ ℤ) ∧ 𝑁𝑀) → (0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
11 nn0ge0 9231 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
1211adantr 276 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ0𝑀 ∈ ℤ) → 0 ≤ 𝑁)
1312anim1i 340 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0𝑀 ∈ ℤ) ∧ 𝑁𝑀) → (0 ≤ 𝑁𝑁𝑀))
14 letr 8070 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((0 ≤ 𝑁𝑁𝑀) → 0 ≤ 𝑀))
1510, 13, 14sylc 62 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0𝑀 ∈ ℤ) ∧ 𝑁𝑀) → 0 ≤ 𝑀)
16 elnn0z 9296 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀))
173, 15, 16sylanbrc 417 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0𝑀 ∈ ℤ) ∧ 𝑁𝑀) → 𝑀 ∈ ℕ0)
1817exp31 364 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → (𝑀 ∈ ℤ → (𝑁𝑀𝑀 ∈ ℕ0)))
1918com23 78 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁𝑀 → (𝑀 ∈ ℤ → 𝑀 ∈ ℕ0)))
20193ad2ant1 1020 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → (𝑁𝑀 → (𝑀 ∈ ℤ → 𝑀 ∈ ℕ0)))
2120com13 80 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → (𝑁𝑀 → ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → 𝑀 ∈ ℕ0)))
2221adantrd 279 . . . . . . . . . . 11 (𝑀 ∈ ℤ → ((𝑁𝑀𝑀𝑅) → ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → 𝑀 ∈ ℕ0)))
23223ad2ant3 1022 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁𝑀𝑀𝑅) → ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → 𝑀 ∈ ℕ0)))
2423imp 124 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁𝑀𝑀𝑅)) → ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → 𝑀 ∈ ℕ0))
2524imp 124 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁𝑀𝑀𝑅)) ∧ (𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅)) → 𝑀 ∈ ℕ0)
26 simpr2 1006 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁𝑀𝑀𝑅)) ∧ (𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅)) → 𝑅 ∈ ℕ0)
27 simplrr 536 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁𝑀𝑀𝑅)) ∧ (𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅)) → 𝑀𝑅)
2825, 26, 273jca 1179 . . . . . . 7 ((((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁𝑀𝑀𝑅)) ∧ (𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅)) → (𝑀 ∈ ℕ0𝑅 ∈ ℕ0𝑀𝑅))
2928ex 115 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁𝑀𝑀𝑅)) → ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → (𝑀 ∈ ℕ0𝑅 ∈ ℕ0𝑀𝑅)))
302, 29sylbi 121 . . . . 5 (𝑀 ∈ (𝑁...𝑅) → ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → (𝑀 ∈ ℕ0𝑅 ∈ ℕ0𝑀𝑅)))
3130com12 30 . . . 4 ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → (𝑀 ∈ (𝑁...𝑅) → (𝑀 ∈ ℕ0𝑅 ∈ ℕ0𝑀𝑅)))
321, 31sylbi 121 . . 3 (𝑁 ∈ (0...𝑅) → (𝑀 ∈ (𝑁...𝑅) → (𝑀 ∈ ℕ0𝑅 ∈ ℕ0𝑀𝑅)))
3332imp 124 . 2 ((𝑁 ∈ (0...𝑅) ∧ 𝑀 ∈ (𝑁...𝑅)) → (𝑀 ∈ ℕ0𝑅 ∈ ℕ0𝑀𝑅))
34 elfz2nn0 10142 . 2 (𝑀 ∈ (0...𝑅) ↔ (𝑀 ∈ ℕ0𝑅 ∈ ℕ0𝑀𝑅))
3533, 34sylibr 134 1 ((𝑁 ∈ (0...𝑅) ∧ 𝑀 ∈ (𝑁...𝑅)) → 𝑀 ∈ (0...𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980  wcel 2160   class class class wbr 4018  (class class class)co 5896  cr 7840  0cc0 7841  cle 8023  0cn0 9206  cz 9283  ...cfz 10038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-addcom 7941  ax-addass 7943  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-0id 7949  ax-rnegex 7950  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-ltadd 7957
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-inn 8950  df-n0 9207  df-z 9284  df-uz 9559  df-fz 10039
This theorem is referenced by:  fz0fzdiffz0  10160
  Copyright terms: Public domain W3C validator