ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringadd2 GIF version

Theorem ringadd2 13839
Description: A ring element plus itself is two times the element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (Revised by AV, 24-Aug-2021.)
Hypotheses
Ref Expression
ringadd2.b 𝐵 = (Base‘𝑅)
ringadd2.p + = (+g𝑅)
ringadd2.t · = (.r𝑅)
Assertion
Ref Expression
ringadd2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ∃𝑥𝐵 (𝑋 + 𝑋) = ((𝑥 + 𝑥) · 𝑋))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑅   𝑥,𝑋   𝑥, ·
Allowed substitution hint:   + (𝑥)

Proof of Theorem ringadd2
StepHypRef Expression
1 ringadd2.b . . 3 𝐵 = (Base‘𝑅)
2 ringadd2.t . . 3 · = (.r𝑅)
31, 2ringid 13838 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ∃𝑥𝐵 ((𝑥 · 𝑋) = 𝑋 ∧ (𝑋 · 𝑥) = 𝑋))
4 oveq12 5963 . . . . . . 7 (((𝑥 · 𝑋) = 𝑋 ∧ (𝑥 · 𝑋) = 𝑋) → ((𝑥 · 𝑋) + (𝑥 · 𝑋)) = (𝑋 + 𝑋))
54anidms 397 . . . . . 6 ((𝑥 · 𝑋) = 𝑋 → ((𝑥 · 𝑋) + (𝑥 · 𝑋)) = (𝑋 + 𝑋))
65eqcomd 2212 . . . . 5 ((𝑥 · 𝑋) = 𝑋 → (𝑋 + 𝑋) = ((𝑥 · 𝑋) + (𝑥 · 𝑋)))
7 simpll 527 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑥𝐵) → 𝑅 ∈ Ring)
8 simpr 110 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑥𝐵) → 𝑥𝐵)
9 simplr 528 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑥𝐵) → 𝑋𝐵)
10 ringadd2.p . . . . . . . 8 + = (+g𝑅)
111, 10, 2ringdir 13831 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑥𝐵𝑋𝐵)) → ((𝑥 + 𝑥) · 𝑋) = ((𝑥 · 𝑋) + (𝑥 · 𝑋)))
127, 8, 8, 9, 11syl13anc 1252 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑥𝐵) → ((𝑥 + 𝑥) · 𝑋) = ((𝑥 · 𝑋) + (𝑥 · 𝑋)))
1312eqeq2d 2218 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑥𝐵) → ((𝑋 + 𝑋) = ((𝑥 + 𝑥) · 𝑋) ↔ (𝑋 + 𝑋) = ((𝑥 · 𝑋) + (𝑥 · 𝑋))))
146, 13imbitrrid 156 . . . 4 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑥𝐵) → ((𝑥 · 𝑋) = 𝑋 → (𝑋 + 𝑋) = ((𝑥 + 𝑥) · 𝑋)))
1514adantrd 279 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑥𝐵) → (((𝑥 · 𝑋) = 𝑋 ∧ (𝑋 · 𝑥) = 𝑋) → (𝑋 + 𝑋) = ((𝑥 + 𝑥) · 𝑋)))
1615reximdva 2609 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (∃𝑥𝐵 ((𝑥 · 𝑋) = 𝑋 ∧ (𝑋 · 𝑥) = 𝑋) → ∃𝑥𝐵 (𝑋 + 𝑋) = ((𝑥 + 𝑥) · 𝑋)))
173, 16mpd 13 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ∃𝑥𝐵 (𝑋 + 𝑋) = ((𝑥 + 𝑥) · 𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wrex 2486  cfv 5277  (class class class)co 5954  Basecbs 12882  +gcplusg 12959  .rcmulr 12960  Ringcrg 13808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-addcom 8038  ax-addass 8040  ax-i2m1 8043  ax-0lt1 8044  ax-0id 8046  ax-rnegex 8047  ax-pre-ltirr 8050  ax-pre-ltadd 8054
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-pnf 8122  df-mnf 8123  df-ltxr 8125  df-inn 9050  df-2 9108  df-3 9109  df-ndx 12885  df-slot 12886  df-base 12888  df-sets 12889  df-plusg 12972  df-mulr 12973  df-0g 13140  df-mgm 13238  df-sgrp 13284  df-mnd 13299  df-mgp 13733  df-ur 13772  df-ring 13810
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator