![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ringadd2 | GIF version |
Description: A ring element plus itself is two times the element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (Revised by AV, 24-Aug-2021.) |
Ref | Expression |
---|---|
ringadd2.b | ⊢ 𝐵 = (Base‘𝑅) |
ringadd2.p | ⊢ + = (+g‘𝑅) |
ringadd2.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
ringadd2 | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ∃𝑥 ∈ 𝐵 (𝑋 + 𝑋) = ((𝑥 + 𝑥) · 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringadd2.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
2 | ringadd2.t | . . 3 ⊢ · = (.r‘𝑅) | |
3 | 1, 2 | ringid 13022 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ∃𝑥 ∈ 𝐵 ((𝑥 · 𝑋) = 𝑋 ∧ (𝑋 · 𝑥) = 𝑋)) |
4 | oveq12 5877 | . . . . . . 7 ⊢ (((𝑥 · 𝑋) = 𝑋 ∧ (𝑥 · 𝑋) = 𝑋) → ((𝑥 · 𝑋) + (𝑥 · 𝑋)) = (𝑋 + 𝑋)) | |
5 | 4 | anidms 397 | . . . . . 6 ⊢ ((𝑥 · 𝑋) = 𝑋 → ((𝑥 · 𝑋) + (𝑥 · 𝑋)) = (𝑋 + 𝑋)) |
6 | 5 | eqcomd 2183 | . . . . 5 ⊢ ((𝑥 · 𝑋) = 𝑋 → (𝑋 + 𝑋) = ((𝑥 · 𝑋) + (𝑥 · 𝑋))) |
7 | simpll 527 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑅 ∈ Ring) | |
8 | simpr 110 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
9 | simplr 528 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
10 | ringadd2.p | . . . . . . . 8 ⊢ + = (+g‘𝑅) | |
11 | 1, 10, 2 | ringdir 13015 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑥 + 𝑥) · 𝑋) = ((𝑥 · 𝑋) + (𝑥 · 𝑋))) |
12 | 7, 8, 8, 9, 11 | syl13anc 1240 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → ((𝑥 + 𝑥) · 𝑋) = ((𝑥 · 𝑋) + (𝑥 · 𝑋))) |
13 | 12 | eqeq2d 2189 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → ((𝑋 + 𝑋) = ((𝑥 + 𝑥) · 𝑋) ↔ (𝑋 + 𝑋) = ((𝑥 · 𝑋) + (𝑥 · 𝑋)))) |
14 | 6, 13 | syl5ibr 156 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → ((𝑥 · 𝑋) = 𝑋 → (𝑋 + 𝑋) = ((𝑥 + 𝑥) · 𝑋))) |
15 | 14 | adantrd 279 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → (((𝑥 · 𝑋) = 𝑋 ∧ (𝑋 · 𝑥) = 𝑋) → (𝑋 + 𝑋) = ((𝑥 + 𝑥) · 𝑋))) |
16 | 15 | reximdva 2579 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (∃𝑥 ∈ 𝐵 ((𝑥 · 𝑋) = 𝑋 ∧ (𝑋 · 𝑥) = 𝑋) → ∃𝑥 ∈ 𝐵 (𝑋 + 𝑋) = ((𝑥 + 𝑥) · 𝑋))) |
17 | 3, 16 | mpd 13 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ∃𝑥 ∈ 𝐵 (𝑋 + 𝑋) = ((𝑥 + 𝑥) · 𝑋)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ∃wrex 2456 ‘cfv 5211 (class class class)co 5868 Basecbs 12432 +gcplusg 12505 .rcmulr 12506 Ringcrg 12992 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4118 ax-pow 4171 ax-pr 4205 ax-un 4429 ax-setind 4532 ax-cnex 7880 ax-resscn 7881 ax-1cn 7882 ax-1re 7883 ax-icn 7884 ax-addcl 7885 ax-addrcl 7886 ax-mulcl 7887 ax-addcom 7889 ax-addass 7891 ax-i2m1 7894 ax-0lt1 7895 ax-0id 7897 ax-rnegex 7898 ax-pre-ltirr 7901 ax-pre-ltadd 7905 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-pw 3576 df-sn 3597 df-pr 3598 df-op 3600 df-uni 3808 df-int 3843 df-br 4001 df-opab 4062 df-mpt 4063 df-id 4289 df-xp 4628 df-rel 4629 df-cnv 4630 df-co 4631 df-dm 4632 df-rn 4633 df-res 4634 df-ima 4635 df-iota 5173 df-fun 5213 df-fn 5214 df-fv 5219 df-riota 5824 df-ov 5871 df-oprab 5872 df-mpo 5873 df-pnf 7971 df-mnf 7972 df-ltxr 7974 df-inn 8896 df-2 8954 df-3 8955 df-ndx 12435 df-slot 12436 df-base 12438 df-sets 12439 df-plusg 12518 df-mulr 12519 df-0g 12642 df-mgm 12654 df-sgrp 12687 df-mnd 12697 df-mgp 12945 df-ur 12956 df-ring 12994 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |