ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringadd2 GIF version

Theorem ringadd2 13583
Description: A ring element plus itself is two times the element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (Revised by AV, 24-Aug-2021.)
Hypotheses
Ref Expression
ringadd2.b 𝐵 = (Base‘𝑅)
ringadd2.p + = (+g𝑅)
ringadd2.t · = (.r𝑅)
Assertion
Ref Expression
ringadd2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ∃𝑥𝐵 (𝑋 + 𝑋) = ((𝑥 + 𝑥) · 𝑋))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑅   𝑥,𝑋   𝑥, ·
Allowed substitution hint:   + (𝑥)

Proof of Theorem ringadd2
StepHypRef Expression
1 ringadd2.b . . 3 𝐵 = (Base‘𝑅)
2 ringadd2.t . . 3 · = (.r𝑅)
31, 2ringid 13582 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ∃𝑥𝐵 ((𝑥 · 𝑋) = 𝑋 ∧ (𝑋 · 𝑥) = 𝑋))
4 oveq12 5931 . . . . . . 7 (((𝑥 · 𝑋) = 𝑋 ∧ (𝑥 · 𝑋) = 𝑋) → ((𝑥 · 𝑋) + (𝑥 · 𝑋)) = (𝑋 + 𝑋))
54anidms 397 . . . . . 6 ((𝑥 · 𝑋) = 𝑋 → ((𝑥 · 𝑋) + (𝑥 · 𝑋)) = (𝑋 + 𝑋))
65eqcomd 2202 . . . . 5 ((𝑥 · 𝑋) = 𝑋 → (𝑋 + 𝑋) = ((𝑥 · 𝑋) + (𝑥 · 𝑋)))
7 simpll 527 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑥𝐵) → 𝑅 ∈ Ring)
8 simpr 110 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑥𝐵) → 𝑥𝐵)
9 simplr 528 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑥𝐵) → 𝑋𝐵)
10 ringadd2.p . . . . . . . 8 + = (+g𝑅)
111, 10, 2ringdir 13575 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑥𝐵𝑋𝐵)) → ((𝑥 + 𝑥) · 𝑋) = ((𝑥 · 𝑋) + (𝑥 · 𝑋)))
127, 8, 8, 9, 11syl13anc 1251 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑥𝐵) → ((𝑥 + 𝑥) · 𝑋) = ((𝑥 · 𝑋) + (𝑥 · 𝑋)))
1312eqeq2d 2208 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑥𝐵) → ((𝑋 + 𝑋) = ((𝑥 + 𝑥) · 𝑋) ↔ (𝑋 + 𝑋) = ((𝑥 · 𝑋) + (𝑥 · 𝑋))))
146, 13imbitrrid 156 . . . 4 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑥𝐵) → ((𝑥 · 𝑋) = 𝑋 → (𝑋 + 𝑋) = ((𝑥 + 𝑥) · 𝑋)))
1514adantrd 279 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑥𝐵) → (((𝑥 · 𝑋) = 𝑋 ∧ (𝑋 · 𝑥) = 𝑋) → (𝑋 + 𝑋) = ((𝑥 + 𝑥) · 𝑋)))
1615reximdva 2599 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (∃𝑥𝐵 ((𝑥 · 𝑋) = 𝑋 ∧ (𝑋 · 𝑥) = 𝑋) → ∃𝑥𝐵 (𝑋 + 𝑋) = ((𝑥 + 𝑥) · 𝑋)))
173, 16mpd 13 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ∃𝑥𝐵 (𝑋 + 𝑋) = ((𝑥 + 𝑥) · 𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wrex 2476  cfv 5258  (class class class)co 5922  Basecbs 12678  +gcplusg 12755  .rcmulr 12756  Ringcrg 13552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-mgp 13477  df-ur 13516  df-ring 13554
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator