| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringadd2 | GIF version | ||
| Description: A ring element plus itself is two times the element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (Revised by AV, 24-Aug-2021.) |
| Ref | Expression |
|---|---|
| ringadd2.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringadd2.p | ⊢ + = (+g‘𝑅) |
| ringadd2.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| ringadd2 | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ∃𝑥 ∈ 𝐵 (𝑋 + 𝑋) = ((𝑥 + 𝑥) · 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringadd2.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | ringadd2.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 3 | 1, 2 | ringid 13975 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ∃𝑥 ∈ 𝐵 ((𝑥 · 𝑋) = 𝑋 ∧ (𝑋 · 𝑥) = 𝑋)) |
| 4 | oveq12 6003 | . . . . . . 7 ⊢ (((𝑥 · 𝑋) = 𝑋 ∧ (𝑥 · 𝑋) = 𝑋) → ((𝑥 · 𝑋) + (𝑥 · 𝑋)) = (𝑋 + 𝑋)) | |
| 5 | 4 | anidms 397 | . . . . . 6 ⊢ ((𝑥 · 𝑋) = 𝑋 → ((𝑥 · 𝑋) + (𝑥 · 𝑋)) = (𝑋 + 𝑋)) |
| 6 | 5 | eqcomd 2235 | . . . . 5 ⊢ ((𝑥 · 𝑋) = 𝑋 → (𝑋 + 𝑋) = ((𝑥 · 𝑋) + (𝑥 · 𝑋))) |
| 7 | simpll 527 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑅 ∈ Ring) | |
| 8 | simpr 110 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 9 | simplr 528 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 10 | ringadd2.p | . . . . . . . 8 ⊢ + = (+g‘𝑅) | |
| 11 | 1, 10, 2 | ringdir 13968 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑥 + 𝑥) · 𝑋) = ((𝑥 · 𝑋) + (𝑥 · 𝑋))) |
| 12 | 7, 8, 8, 9, 11 | syl13anc 1273 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → ((𝑥 + 𝑥) · 𝑋) = ((𝑥 · 𝑋) + (𝑥 · 𝑋))) |
| 13 | 12 | eqeq2d 2241 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → ((𝑋 + 𝑋) = ((𝑥 + 𝑥) · 𝑋) ↔ (𝑋 + 𝑋) = ((𝑥 · 𝑋) + (𝑥 · 𝑋)))) |
| 14 | 6, 13 | imbitrrid 156 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → ((𝑥 · 𝑋) = 𝑋 → (𝑋 + 𝑋) = ((𝑥 + 𝑥) · 𝑋))) |
| 15 | 14 | adantrd 279 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → (((𝑥 · 𝑋) = 𝑋 ∧ (𝑋 · 𝑥) = 𝑋) → (𝑋 + 𝑋) = ((𝑥 + 𝑥) · 𝑋))) |
| 16 | 15 | reximdva 2632 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (∃𝑥 ∈ 𝐵 ((𝑥 · 𝑋) = 𝑋 ∧ (𝑋 · 𝑥) = 𝑋) → ∃𝑥 ∈ 𝐵 (𝑋 + 𝑋) = ((𝑥 + 𝑥) · 𝑋))) |
| 17 | 3, 16 | mpd 13 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ∃𝑥 ∈ 𝐵 (𝑋 + 𝑋) = ((𝑥 + 𝑥) · 𝑋)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∃wrex 2509 ‘cfv 5314 (class class class)co 5994 Basecbs 13018 +gcplusg 13096 .rcmulr 13097 Ringcrg 13945 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-pre-ltirr 8099 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-pnf 8171 df-mnf 8172 df-ltxr 8174 df-inn 9099 df-2 9157 df-3 9158 df-ndx 13021 df-slot 13022 df-base 13024 df-sets 13025 df-plusg 13109 df-mulr 13110 df-0g 13277 df-mgm 13375 df-sgrp 13421 df-mnd 13436 df-mgp 13870 df-ur 13909 df-ring 13947 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |