ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringadd2 GIF version

Theorem ringadd2 13523
Description: A ring element plus itself is two times the element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (Revised by AV, 24-Aug-2021.)
Hypotheses
Ref Expression
ringadd2.b 𝐵 = (Base‘𝑅)
ringadd2.p + = (+g𝑅)
ringadd2.t · = (.r𝑅)
Assertion
Ref Expression
ringadd2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ∃𝑥𝐵 (𝑋 + 𝑋) = ((𝑥 + 𝑥) · 𝑋))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑅   𝑥,𝑋   𝑥, ·
Allowed substitution hint:   + (𝑥)

Proof of Theorem ringadd2
StepHypRef Expression
1 ringadd2.b . . 3 𝐵 = (Base‘𝑅)
2 ringadd2.t . . 3 · = (.r𝑅)
31, 2ringid 13522 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ∃𝑥𝐵 ((𝑥 · 𝑋) = 𝑋 ∧ (𝑋 · 𝑥) = 𝑋))
4 oveq12 5927 . . . . . . 7 (((𝑥 · 𝑋) = 𝑋 ∧ (𝑥 · 𝑋) = 𝑋) → ((𝑥 · 𝑋) + (𝑥 · 𝑋)) = (𝑋 + 𝑋))
54anidms 397 . . . . . 6 ((𝑥 · 𝑋) = 𝑋 → ((𝑥 · 𝑋) + (𝑥 · 𝑋)) = (𝑋 + 𝑋))
65eqcomd 2199 . . . . 5 ((𝑥 · 𝑋) = 𝑋 → (𝑋 + 𝑋) = ((𝑥 · 𝑋) + (𝑥 · 𝑋)))
7 simpll 527 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑥𝐵) → 𝑅 ∈ Ring)
8 simpr 110 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑥𝐵) → 𝑥𝐵)
9 simplr 528 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑥𝐵) → 𝑋𝐵)
10 ringadd2.p . . . . . . . 8 + = (+g𝑅)
111, 10, 2ringdir 13515 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑥𝐵𝑋𝐵)) → ((𝑥 + 𝑥) · 𝑋) = ((𝑥 · 𝑋) + (𝑥 · 𝑋)))
127, 8, 8, 9, 11syl13anc 1251 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑥𝐵) → ((𝑥 + 𝑥) · 𝑋) = ((𝑥 · 𝑋) + (𝑥 · 𝑋)))
1312eqeq2d 2205 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑥𝐵) → ((𝑋 + 𝑋) = ((𝑥 + 𝑥) · 𝑋) ↔ (𝑋 + 𝑋) = ((𝑥 · 𝑋) + (𝑥 · 𝑋))))
146, 13imbitrrid 156 . . . 4 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑥𝐵) → ((𝑥 · 𝑋) = 𝑋 → (𝑋 + 𝑋) = ((𝑥 + 𝑥) · 𝑋)))
1514adantrd 279 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑥𝐵) → (((𝑥 · 𝑋) = 𝑋 ∧ (𝑋 · 𝑥) = 𝑋) → (𝑋 + 𝑋) = ((𝑥 + 𝑥) · 𝑋)))
1615reximdva 2596 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (∃𝑥𝐵 ((𝑥 · 𝑋) = 𝑋 ∧ (𝑋 · 𝑥) = 𝑋) → ∃𝑥𝐵 (𝑋 + 𝑋) = ((𝑥 + 𝑥) · 𝑋)))
173, 16mpd 13 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ∃𝑥𝐵 (𝑋 + 𝑋) = ((𝑥 + 𝑥) · 𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wrex 2473  cfv 5254  (class class class)co 5918  Basecbs 12618  +gcplusg 12695  .rcmulr 12696  Ringcrg 13492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-mgp 13417  df-ur 13456  df-ring 13494
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator