Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reeff1 | GIF version |
Description: The exponential function maps real arguments one-to-one to positive reals. (Contributed by Steve Rodriguez, 25-Aug-2007.) (Revised by Mario Carneiro, 10-Nov-2013.) |
Ref | Expression |
---|---|
reeff1 | ⊢ (exp ↾ ℝ):ℝ–1-1→ℝ+ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eff 11626 | . . . . 5 ⊢ exp:ℂ⟶ℂ | |
2 | ffn 5347 | . . . . 5 ⊢ (exp:ℂ⟶ℂ → exp Fn ℂ) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ exp Fn ℂ |
4 | ax-resscn 7866 | . . . 4 ⊢ ℝ ⊆ ℂ | |
5 | fnssres 5311 | . . . 4 ⊢ ((exp Fn ℂ ∧ ℝ ⊆ ℂ) → (exp ↾ ℝ) Fn ℝ) | |
6 | 3, 4, 5 | mp2an 424 | . . 3 ⊢ (exp ↾ ℝ) Fn ℝ |
7 | fvres 5520 | . . . . 5 ⊢ (𝑥 ∈ ℝ → ((exp ↾ ℝ)‘𝑥) = (exp‘𝑥)) | |
8 | rpefcl 11648 | . . . . 5 ⊢ (𝑥 ∈ ℝ → (exp‘𝑥) ∈ ℝ+) | |
9 | 7, 8 | eqeltrd 2247 | . . . 4 ⊢ (𝑥 ∈ ℝ → ((exp ↾ ℝ)‘𝑥) ∈ ℝ+) |
10 | 9 | rgen 2523 | . . 3 ⊢ ∀𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) ∈ ℝ+ |
11 | ffnfv 5654 | . . 3 ⊢ ((exp ↾ ℝ):ℝ⟶ℝ+ ↔ ((exp ↾ ℝ) Fn ℝ ∧ ∀𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) ∈ ℝ+)) | |
12 | 6, 10, 11 | mpbir2an 937 | . 2 ⊢ (exp ↾ ℝ):ℝ⟶ℝ+ |
13 | fvres 5520 | . . . . 5 ⊢ (𝑦 ∈ ℝ → ((exp ↾ ℝ)‘𝑦) = (exp‘𝑦)) | |
14 | 7, 13 | eqeqan12d 2186 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((exp ↾ ℝ)‘𝑥) = ((exp ↾ ℝ)‘𝑦) ↔ (exp‘𝑥) = (exp‘𝑦))) |
15 | reef11 11662 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((exp‘𝑥) = (exp‘𝑦) ↔ 𝑥 = 𝑦)) | |
16 | 15 | biimpd 143 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((exp‘𝑥) = (exp‘𝑦) → 𝑥 = 𝑦)) |
17 | 14, 16 | sylbid 149 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((exp ↾ ℝ)‘𝑥) = ((exp ↾ ℝ)‘𝑦) → 𝑥 = 𝑦)) |
18 | 17 | rgen2a 2524 | . 2 ⊢ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (((exp ↾ ℝ)‘𝑥) = ((exp ↾ ℝ)‘𝑦) → 𝑥 = 𝑦) |
19 | dff13 5747 | . 2 ⊢ ((exp ↾ ℝ):ℝ–1-1→ℝ+ ↔ ((exp ↾ ℝ):ℝ⟶ℝ+ ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (((exp ↾ ℝ)‘𝑥) = ((exp ↾ ℝ)‘𝑦) → 𝑥 = 𝑦))) | |
20 | 12, 18, 19 | mpbir2an 937 | 1 ⊢ (exp ↾ ℝ):ℝ–1-1→ℝ+ |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 ∀wral 2448 ⊆ wss 3121 ↾ cres 4613 Fn wfn 5193 ⟶wf 5194 –1-1→wf1 5195 ‘cfv 5198 ℂcc 7772 ℝcr 7773 ℝ+crp 9610 expce 11605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-disj 3967 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-frec 6370 df-1o 6395 df-oadd 6399 df-er 6513 df-en 6719 df-dom 6720 df-fin 6721 df-sup 6961 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-ico 9851 df-fz 9966 df-fzo 10099 df-seqfrec 10402 df-exp 10476 df-fac 10660 df-bc 10682 df-ihash 10710 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-clim 11242 df-sumdc 11317 df-ef 11611 |
This theorem is referenced by: reeff1o 13488 relogef 13579 |
Copyright terms: Public domain | W3C validator |