| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reeff1 | GIF version | ||
| Description: The exponential function maps real arguments one-to-one to positive reals. (Contributed by Steve Rodriguez, 25-Aug-2007.) (Revised by Mario Carneiro, 10-Nov-2013.) |
| Ref | Expression |
|---|---|
| reeff1 | ⊢ (exp ↾ ℝ):ℝ–1-1→ℝ+ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eff 11828 | . . . . 5 ⊢ exp:ℂ⟶ℂ | |
| 2 | ffn 5407 | . . . . 5 ⊢ (exp:ℂ⟶ℂ → exp Fn ℂ) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ exp Fn ℂ |
| 4 | ax-resscn 7971 | . . . 4 ⊢ ℝ ⊆ ℂ | |
| 5 | fnssres 5371 | . . . 4 ⊢ ((exp Fn ℂ ∧ ℝ ⊆ ℂ) → (exp ↾ ℝ) Fn ℝ) | |
| 6 | 3, 4, 5 | mp2an 426 | . . 3 ⊢ (exp ↾ ℝ) Fn ℝ |
| 7 | fvres 5582 | . . . . 5 ⊢ (𝑥 ∈ ℝ → ((exp ↾ ℝ)‘𝑥) = (exp‘𝑥)) | |
| 8 | rpefcl 11850 | . . . . 5 ⊢ (𝑥 ∈ ℝ → (exp‘𝑥) ∈ ℝ+) | |
| 9 | 7, 8 | eqeltrd 2273 | . . . 4 ⊢ (𝑥 ∈ ℝ → ((exp ↾ ℝ)‘𝑥) ∈ ℝ+) |
| 10 | 9 | rgen 2550 | . . 3 ⊢ ∀𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) ∈ ℝ+ |
| 11 | ffnfv 5720 | . . 3 ⊢ ((exp ↾ ℝ):ℝ⟶ℝ+ ↔ ((exp ↾ ℝ) Fn ℝ ∧ ∀𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) ∈ ℝ+)) | |
| 12 | 6, 10, 11 | mpbir2an 944 | . 2 ⊢ (exp ↾ ℝ):ℝ⟶ℝ+ |
| 13 | fvres 5582 | . . . . 5 ⊢ (𝑦 ∈ ℝ → ((exp ↾ ℝ)‘𝑦) = (exp‘𝑦)) | |
| 14 | 7, 13 | eqeqan12d 2212 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((exp ↾ ℝ)‘𝑥) = ((exp ↾ ℝ)‘𝑦) ↔ (exp‘𝑥) = (exp‘𝑦))) |
| 15 | reef11 11864 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((exp‘𝑥) = (exp‘𝑦) ↔ 𝑥 = 𝑦)) | |
| 16 | 15 | biimpd 144 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((exp‘𝑥) = (exp‘𝑦) → 𝑥 = 𝑦)) |
| 17 | 14, 16 | sylbid 150 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((exp ↾ ℝ)‘𝑥) = ((exp ↾ ℝ)‘𝑦) → 𝑥 = 𝑦)) |
| 18 | 17 | rgen2a 2551 | . 2 ⊢ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (((exp ↾ ℝ)‘𝑥) = ((exp ↾ ℝ)‘𝑦) → 𝑥 = 𝑦) |
| 19 | dff13 5815 | . 2 ⊢ ((exp ↾ ℝ):ℝ–1-1→ℝ+ ↔ ((exp ↾ ℝ):ℝ⟶ℝ+ ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (((exp ↾ ℝ)‘𝑥) = ((exp ↾ ℝ)‘𝑦) → 𝑥 = 𝑦))) | |
| 20 | 12, 18, 19 | mpbir2an 944 | 1 ⊢ (exp ↾ ℝ):ℝ–1-1→ℝ+ |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ⊆ wss 3157 ↾ cres 4665 Fn wfn 5253 ⟶wf 5254 –1-1→wf1 5255 ‘cfv 5258 ℂcc 7877 ℝcr 7878 ℝ+crp 9728 expce 11807 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-disj 4011 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-oadd 6478 df-er 6592 df-en 6800 df-dom 6801 df-fin 6802 df-sup 7050 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-ico 9969 df-fz 10084 df-fzo 10218 df-seqfrec 10540 df-exp 10631 df-fac 10818 df-bc 10840 df-ihash 10868 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-clim 11444 df-sumdc 11519 df-ef 11813 |
| This theorem is referenced by: reeff1o 15009 relogef 15100 |
| Copyright terms: Public domain | W3C validator |