ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limcimolemlt GIF version

Theorem limcimolemlt 12802
Description: Lemma for limcimo 12803. (Contributed by Jim Kingdon, 3-Jul-2023.)
Hypotheses
Ref Expression
limcflf.f (𝜑𝐹:𝐴⟶ℂ)
limcflf.a (𝜑𝐴 ⊆ ℂ)
limcimo.b (𝜑𝐵 ∈ ℂ)
limcimo.bc (𝜑𝐵𝐶)
limcimo.bs (𝜑𝐵𝑆)
limcimo.c (𝜑𝐶 ∈ (𝐾t 𝑆))
limcimo.s (𝜑𝑆 ∈ {ℝ, ℂ})
limcimo.ca (𝜑 → {𝑞𝐶𝑞 # 𝐵} ⊆ 𝐴)
limcflfcntop.k 𝐾 = (MetOpen‘(abs ∘ − ))
limcimo.d (𝜑𝐷 ∈ ℝ+)
limcimo.x (𝜑𝑋 ∈ (𝐹 lim 𝐵))
limcimo.y (𝜑𝑌 ∈ (𝐹 lim 𝐵))
limcimo.z (𝜑 → ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝐷) → (abs‘((𝐹𝑧) − 𝑋)) < ((abs‘(𝑋𝑌)) / 2)))
limcimo.g (𝜑𝐺 ∈ ℝ+)
limcimo.w (𝜑 → ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝐺) → (abs‘((𝐹𝑤) − 𝑌)) < ((abs‘(𝑋𝑌)) / 2)))
Assertion
Ref Expression
limcimolemlt (𝜑 → (abs‘(𝑋𝑌)) < (abs‘(𝑋𝑌)))
Distinct variable groups:   𝑤,𝐴   𝑧,𝐴   𝐵,𝑞   𝑤,𝐵   𝑧,𝐵   𝐶,𝑞   𝑧,𝐷   𝑤,𝐹   𝑧,𝐹   𝑤,𝐺   𝑤,𝑋   𝑧,𝑋   𝑤,𝑌   𝑧,𝑌
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑞)   𝐴(𝑞)   𝐶(𝑧,𝑤)   𝐷(𝑤,𝑞)   𝑆(𝑧,𝑤,𝑞)   𝐹(𝑞)   𝐺(𝑧,𝑞)   𝐾(𝑧,𝑤,𝑞)   𝑋(𝑞)   𝑌(𝑞)

Proof of Theorem limcimolemlt
Dummy variables 𝑎 𝑏 𝑐 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnxmet 12700 . . . 4 (abs ∘ − ) ∈ (∞Met‘ℂ)
2 ax-resscn 7712 . . . . . . 7 ℝ ⊆ ℂ
3 sseq1 3120 . . . . . . 7 (𝑆 = ℝ → (𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ))
42, 3mpbiri 167 . . . . . 6 (𝑆 = ℝ → 𝑆 ⊆ ℂ)
54adantl 275 . . . . 5 ((𝜑𝑆 = ℝ) → 𝑆 ⊆ ℂ)
6 eqimss 3151 . . . . . 6 (𝑆 = ℂ → 𝑆 ⊆ ℂ)
76adantl 275 . . . . 5 ((𝜑𝑆 = ℂ) → 𝑆 ⊆ ℂ)
8 limcimo.s . . . . . 6 (𝜑𝑆 ∈ {ℝ, ℂ})
9 elpri 3550 . . . . . 6 (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ))
108, 9syl 14 . . . . 5 (𝜑 → (𝑆 = ℝ ∨ 𝑆 = ℂ))
115, 7, 10mpjaodan 787 . . . 4 (𝜑𝑆 ⊆ ℂ)
12 xmetres2 12548 . . . 4 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆))
131, 11, 12sylancr 410 . . 3 (𝜑 → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆))
14 limcimo.c . . . 4 (𝜑𝐶 ∈ (𝐾t 𝑆))
15 eqid 2139 . . . . . 6 ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (𝑆 × 𝑆))
16 limcflfcntop.k . . . . . 6 𝐾 = (MetOpen‘(abs ∘ − ))
17 eqid 2139 . . . . . 6 (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆))) = (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))
1815, 16, 17metrest 12675 . . . . 5 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾t 𝑆) = (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆))))
191, 11, 18sylancr 410 . . . 4 (𝜑 → (𝐾t 𝑆) = (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆))))
2014, 19eleqtrd 2218 . . 3 (𝜑𝐶 ∈ (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆))))
21 limcimo.bc . . 3 (𝜑𝐵𝐶)
22 limcimo.d . . . 4 (𝜑𝐷 ∈ ℝ+)
23 limcimo.g . . . 4 (𝜑𝐺 ∈ ℝ+)
24 rpmincl 11009 . . . 4 ((𝐷 ∈ ℝ+𝐺 ∈ ℝ+) → inf({𝐷, 𝐺}, ℝ, < ) ∈ ℝ+)
2522, 23, 24syl2anc 408 . . 3 (𝜑 → inf({𝐷, 𝐺}, ℝ, < ) ∈ ℝ+)
2617mopni3 12653 . . 3 (((((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆) ∧ 𝐶 ∈ (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆))) ∧ 𝐵𝐶) ∧ inf({𝐷, 𝐺}, ℝ, < ) ∈ ℝ+) → ∃𝑟 ∈ ℝ+ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))
2713, 20, 21, 25, 26syl31anc 1219 . 2 (𝜑 → ∃𝑟 ∈ ℝ+ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))
28 limcimo.x . . . . . 6 (𝜑𝑋 ∈ (𝐹 lim 𝐵))
29 limcrcl 12796 . . . . . . . . 9 (𝑋 ∈ (𝐹 lim 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
3028, 29syl 14 . . . . . . . 8 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
3130simp1d 993 . . . . . . 7 (𝜑𝐹:dom 𝐹⟶ℂ)
3230simp2d 994 . . . . . . 7 (𝜑 → dom 𝐹 ⊆ ℂ)
33 limcimo.b . . . . . . 7 (𝜑𝐵 ∈ ℂ)
3431, 32, 33ellimc3ap 12799 . . . . . 6 (𝜑 → (𝑋 ∈ (𝐹 lim 𝐵) ↔ (𝑋 ∈ ℂ ∧ ∀𝑎 ∈ ℝ+𝑏 ∈ ℝ+𝑐 ∈ dom 𝐹((𝑐 # 𝐵 ∧ (abs‘(𝑐𝐵)) < 𝑏) → (abs‘((𝐹𝑐) − 𝑋)) < 𝑎))))
3528, 34mpbid 146 . . . . 5 (𝜑 → (𝑋 ∈ ℂ ∧ ∀𝑎 ∈ ℝ+𝑏 ∈ ℝ+𝑐 ∈ dom 𝐹((𝑐 # 𝐵 ∧ (abs‘(𝑐𝐵)) < 𝑏) → (abs‘((𝐹𝑐) − 𝑋)) < 𝑎)))
3635simpld 111 . . . 4 (𝜑𝑋 ∈ ℂ)
3736adantr 274 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝑋 ∈ ℂ)
38 limcimo.y . . . . . 6 (𝜑𝑌 ∈ (𝐹 lim 𝐵))
3931, 32, 33ellimc3ap 12799 . . . . . 6 (𝜑 → (𝑌 ∈ (𝐹 lim 𝐵) ↔ (𝑌 ∈ ℂ ∧ ∀𝑎 ∈ ℝ+𝑏 ∈ ℝ+𝑐 ∈ dom 𝐹((𝑐 # 𝐵 ∧ (abs‘(𝑐𝐵)) < 𝑏) → (abs‘((𝐹𝑐) − 𝑌)) < 𝑎))))
4038, 39mpbid 146 . . . . 5 (𝜑 → (𝑌 ∈ ℂ ∧ ∀𝑎 ∈ ℝ+𝑏 ∈ ℝ+𝑐 ∈ dom 𝐹((𝑐 # 𝐵 ∧ (abs‘(𝑐𝐵)) < 𝑏) → (abs‘((𝐹𝑐) − 𝑌)) < 𝑎)))
4140simpld 111 . . . 4 (𝜑𝑌 ∈ ℂ)
4241adantr 274 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝑌 ∈ ℂ)
43 limcflf.f . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
4443adantr 274 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝐹:𝐴⟶ℂ)
45 breq1 3932 . . . . . 6 (𝑞 = (𝐵 + (𝑟 / 2)) → (𝑞 # 𝐵 ↔ (𝐵 + (𝑟 / 2)) # 𝐵))
46 simprrr 529 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶)
47 limcimo.bs . . . . . . . . . . . 12 (𝜑𝐵𝑆)
4847adantr 274 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝐵𝑆)
4947ad2antrr 479 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℝ) → 𝐵𝑆)
50 simpr 109 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℝ) → 𝑆 = ℝ)
5149, 50eleqtrd 2218 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℝ) → 𝐵 ∈ ℝ)
52 simprl 520 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝑟 ∈ ℝ+)
5352rphalfcld 9496 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝑟 / 2) ∈ ℝ+)
5453adantr 274 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℝ) → (𝑟 / 2) ∈ ℝ+)
5554rpred 9483 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℝ) → (𝑟 / 2) ∈ ℝ)
5651, 55readdcld 7795 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℝ) → (𝐵 + (𝑟 / 2)) ∈ ℝ)
5756, 50eleqtrrd 2219 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℝ) → (𝐵 + (𝑟 / 2)) ∈ 𝑆)
5833ad2antrr 479 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℂ) → 𝐵 ∈ ℂ)
5953adantr 274 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℂ) → (𝑟 / 2) ∈ ℝ+)
6059rpcnd 9485 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℂ) → (𝑟 / 2) ∈ ℂ)
6158, 60addcld 7785 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℂ) → (𝐵 + (𝑟 / 2)) ∈ ℂ)
62 simpr 109 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℂ) → 𝑆 = ℂ)
6361, 62eleqtrrd 2219 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℂ) → (𝐵 + (𝑟 / 2)) ∈ 𝑆)
6410adantr 274 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝑆 = ℝ ∨ 𝑆 = ℂ))
6557, 63, 64mpjaodan 787 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵 + (𝑟 / 2)) ∈ 𝑆)
6648, 65ovresd 5911 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵((abs ∘ − ) ↾ (𝑆 × 𝑆))(𝐵 + (𝑟 / 2))) = (𝐵(abs ∘ − )(𝐵 + (𝑟 / 2))))
6733adantr 274 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝐵 ∈ ℂ)
6853rpcnd 9485 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝑟 / 2) ∈ ℂ)
6967, 68addcld 7785 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵 + (𝑟 / 2)) ∈ ℂ)
70 eqid 2139 . . . . . . . . . . . 12 (abs ∘ − ) = (abs ∘ − )
7170cnmetdval 12698 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ (𝐵 + (𝑟 / 2)) ∈ ℂ) → (𝐵(abs ∘ − )(𝐵 + (𝑟 / 2))) = (abs‘(𝐵 − (𝐵 + (𝑟 / 2)))))
7267, 69, 71syl2anc 408 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵(abs ∘ − )(𝐵 + (𝑟 / 2))) = (abs‘(𝐵 − (𝐵 + (𝑟 / 2)))))
7367, 67, 68subsub4d 8104 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((𝐵𝐵) − (𝑟 / 2)) = (𝐵 − (𝐵 + (𝑟 / 2))))
7467subidd 8061 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵𝐵) = 0)
7574oveq1d 5789 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((𝐵𝐵) − (𝑟 / 2)) = (0 − (𝑟 / 2)))
7673, 75eqtr3d 2174 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵 − (𝐵 + (𝑟 / 2))) = (0 − (𝑟 / 2)))
7776fveq2d 5425 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘(𝐵 − (𝐵 + (𝑟 / 2)))) = (abs‘(0 − (𝑟 / 2))))
78 0cnd 7759 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 0 ∈ ℂ)
7978, 68abssubd 10965 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘(0 − (𝑟 / 2))) = (abs‘((𝑟 / 2) − 0)))
8077, 79eqtrd 2172 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘(𝐵 − (𝐵 + (𝑟 / 2)))) = (abs‘((𝑟 / 2) − 0)))
8168subid1d 8062 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((𝑟 / 2) − 0) = (𝑟 / 2))
8281fveq2d 5425 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘((𝑟 / 2) − 0)) = (abs‘(𝑟 / 2)))
8353rpred 9483 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝑟 / 2) ∈ ℝ)
8453rpge0d 9487 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 0 ≤ (𝑟 / 2))
8583, 84absidd 10939 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘(𝑟 / 2)) = (𝑟 / 2))
8680, 82, 853eqtrd 2176 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘(𝐵 − (𝐵 + (𝑟 / 2)))) = (𝑟 / 2))
8766, 72, 863eqtrd 2176 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵((abs ∘ − ) ↾ (𝑆 × 𝑆))(𝐵 + (𝑟 / 2))) = (𝑟 / 2))
88 rphalflt 9471 . . . . . . . . . 10 (𝑟 ∈ ℝ+ → (𝑟 / 2) < 𝑟)
8988ad2antrl 481 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝑟 / 2) < 𝑟)
9087, 89eqbrtrd 3950 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵((abs ∘ − ) ↾ (𝑆 × 𝑆))(𝐵 + (𝑟 / 2))) < 𝑟)
9113adantr 274 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆))
92 rpxr 9449 . . . . . . . . . 10 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
9392ad2antrl 481 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝑟 ∈ ℝ*)
94 elbl2 12562 . . . . . . . . 9 (((((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆) ∧ 𝑟 ∈ ℝ*) ∧ (𝐵𝑆 ∧ (𝐵 + (𝑟 / 2)) ∈ 𝑆)) → ((𝐵 + (𝑟 / 2)) ∈ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ↔ (𝐵((abs ∘ − ) ↾ (𝑆 × 𝑆))(𝐵 + (𝑟 / 2))) < 𝑟))
9591, 93, 48, 65, 94syl22anc 1217 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((𝐵 + (𝑟 / 2)) ∈ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ↔ (𝐵((abs ∘ − ) ↾ (𝑆 × 𝑆))(𝐵 + (𝑟 / 2))) < 𝑟))
9690, 95mpbird 166 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵 + (𝑟 / 2)) ∈ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟))
9746, 96sseldd 3098 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵 + (𝑟 / 2)) ∈ 𝐶)
9853rpap0d 9489 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝑟 / 2) # 0)
9967, 67negsubdid 8088 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → -(𝐵𝐵) = (-𝐵 + 𝐵))
10074negeqd 7957 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → -(𝐵𝐵) = -0)
101 neg0 8008 . . . . . . . . . . . 12 -0 = 0
102100, 101syl6eq 2188 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → -(𝐵𝐵) = 0)
10399, 102eqtr3d 2174 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (-𝐵 + 𝐵) = 0)
104103oveq1d 5789 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((-𝐵 + 𝐵) + (𝑟 / 2)) = (0 + (𝑟 / 2)))
10567negcld 8060 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → -𝐵 ∈ ℂ)
106105, 67, 68addassd 7788 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((-𝐵 + 𝐵) + (𝑟 / 2)) = (-𝐵 + (𝐵 + (𝑟 / 2))))
10768addid2d 7912 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (0 + (𝑟 / 2)) = (𝑟 / 2))
108104, 106, 1073eqtr3d 2180 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (-𝐵 + (𝐵 + (𝑟 / 2))) = (𝑟 / 2))
10998, 108, 1033brtr4d 3960 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (-𝐵 + (𝐵 + (𝑟 / 2))) # (-𝐵 + 𝐵))
110 apadd2 8371 . . . . . . . 8 (((𝐵 + (𝑟 / 2)) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ -𝐵 ∈ ℂ) → ((𝐵 + (𝑟 / 2)) # 𝐵 ↔ (-𝐵 + (𝐵 + (𝑟 / 2))) # (-𝐵 + 𝐵)))
11169, 67, 105, 110syl3anc 1216 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((𝐵 + (𝑟 / 2)) # 𝐵 ↔ (-𝐵 + (𝐵 + (𝑟 / 2))) # (-𝐵 + 𝐵)))
112109, 111mpbird 166 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵 + (𝑟 / 2)) # 𝐵)
11345, 97, 112elrabd 2842 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵 + (𝑟 / 2)) ∈ {𝑞𝐶𝑞 # 𝐵})
114 limcimo.ca . . . . . . 7 (𝜑 → {𝑞𝐶𝑞 # 𝐵} ⊆ 𝐴)
115114sseld 3096 . . . . . 6 (𝜑 → ((𝐵 + (𝑟 / 2)) ∈ {𝑞𝐶𝑞 # 𝐵} → (𝐵 + (𝑟 / 2)) ∈ 𝐴))
116115adantr 274 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((𝐵 + (𝑟 / 2)) ∈ {𝑞𝐶𝑞 # 𝐵} → (𝐵 + (𝑟 / 2)) ∈ 𝐴))
117113, 116mpd 13 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵 + (𝑟 / 2)) ∈ 𝐴)
11844, 117ffvelrnd 5556 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐹‘(𝐵 + (𝑟 / 2))) ∈ ℂ)
11937, 42subcld 8073 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝑋𝑌) ∈ ℂ)
120119abscld 10953 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘(𝑋𝑌)) ∈ ℝ)
12137, 118abssubd 10965 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘(𝑋 − (𝐹‘(𝐵 + (𝑟 / 2))))) = (abs‘((𝐹‘(𝐵 + (𝑟 / 2))) − 𝑋)))
12269, 67subcld 8073 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((𝐵 + (𝑟 / 2)) − 𝐵) ∈ ℂ)
123122abscld 10953 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) ∈ ℝ)
12452rpred 9483 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝑟 ∈ ℝ)
12522rpred 9483 . . . . . . 7 (𝜑𝐷 ∈ ℝ)
126125adantr 274 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝐷 ∈ ℝ)
12767, 68pncan2d 8075 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((𝐵 + (𝑟 / 2)) − 𝐵) = (𝑟 / 2))
128127fveq2d 5425 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) = (abs‘(𝑟 / 2)))
129128, 85eqtrd 2172 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) = (𝑟 / 2))
130129, 89eqbrtrd 3950 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝑟)
13123rpred 9483 . . . . . . . . 9 (𝜑𝐺 ∈ ℝ)
132131adantr 274 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝐺 ∈ ℝ)
133 mincl 11002 . . . . . . . 8 ((𝐷 ∈ ℝ ∧ 𝐺 ∈ ℝ) → inf({𝐷, 𝐺}, ℝ, < ) ∈ ℝ)
134126, 132, 133syl2anc 408 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → inf({𝐷, 𝐺}, ℝ, < ) ∈ ℝ)
135 simprrl 528 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝑟 < inf({𝐷, 𝐺}, ℝ, < ))
136 min1inf 11003 . . . . . . . 8 ((𝐷 ∈ ℝ ∧ 𝐺 ∈ ℝ) → inf({𝐷, 𝐺}, ℝ, < ) ≤ 𝐷)
137126, 132, 136syl2anc 408 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → inf({𝐷, 𝐺}, ℝ, < ) ≤ 𝐷)
138124, 134, 126, 135, 137ltletrd 8185 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝑟 < 𝐷)
139123, 124, 126, 130, 138lttrd 7888 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐷)
140 breq1 3932 . . . . . . . 8 (𝑧 = (𝐵 + (𝑟 / 2)) → (𝑧 # 𝐵 ↔ (𝐵 + (𝑟 / 2)) # 𝐵))
141 fvoveq1 5797 . . . . . . . . 9 (𝑧 = (𝐵 + (𝑟 / 2)) → (abs‘(𝑧𝐵)) = (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)))
142141breq1d 3939 . . . . . . . 8 (𝑧 = (𝐵 + (𝑟 / 2)) → ((abs‘(𝑧𝐵)) < 𝐷 ↔ (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐷))
143140, 142anbi12d 464 . . . . . . 7 (𝑧 = (𝐵 + (𝑟 / 2)) → ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝐷) ↔ ((𝐵 + (𝑟 / 2)) # 𝐵 ∧ (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐷)))
144143imbrov2fvoveq 5799 . . . . . 6 (𝑧 = (𝐵 + (𝑟 / 2)) → (((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝐷) → (abs‘((𝐹𝑧) − 𝑋)) < ((abs‘(𝑋𝑌)) / 2)) ↔ (((𝐵 + (𝑟 / 2)) # 𝐵 ∧ (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐷) → (abs‘((𝐹‘(𝐵 + (𝑟 / 2))) − 𝑋)) < ((abs‘(𝑋𝑌)) / 2))))
145 limcimo.z . . . . . . 7 (𝜑 → ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝐷) → (abs‘((𝐹𝑧) − 𝑋)) < ((abs‘(𝑋𝑌)) / 2)))
146145adantr 274 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝐷) → (abs‘((𝐹𝑧) − 𝑋)) < ((abs‘(𝑋𝑌)) / 2)))
147144, 146, 117rspcdva 2794 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (((𝐵 + (𝑟 / 2)) # 𝐵 ∧ (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐷) → (abs‘((𝐹‘(𝐵 + (𝑟 / 2))) − 𝑋)) < ((abs‘(𝑋𝑌)) / 2)))
148112, 139, 147mp2and 429 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘((𝐹‘(𝐵 + (𝑟 / 2))) − 𝑋)) < ((abs‘(𝑋𝑌)) / 2))
149121, 148eqbrtrd 3950 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘(𝑋 − (𝐹‘(𝐵 + (𝑟 / 2))))) < ((abs‘(𝑋𝑌)) / 2))
150 min2inf 11004 . . . . . . 7 ((𝐷 ∈ ℝ ∧ 𝐺 ∈ ℝ) → inf({𝐷, 𝐺}, ℝ, < ) ≤ 𝐺)
151126, 132, 150syl2anc 408 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → inf({𝐷, 𝐺}, ℝ, < ) ≤ 𝐺)
152124, 134, 132, 135, 151ltletrd 8185 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝑟 < 𝐺)
153123, 124, 132, 130, 152lttrd 7888 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐺)
154 breq1 3932 . . . . . . 7 (𝑤 = (𝐵 + (𝑟 / 2)) → (𝑤 # 𝐵 ↔ (𝐵 + (𝑟 / 2)) # 𝐵))
155 fvoveq1 5797 . . . . . . . 8 (𝑤 = (𝐵 + (𝑟 / 2)) → (abs‘(𝑤𝐵)) = (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)))
156155breq1d 3939 . . . . . . 7 (𝑤 = (𝐵 + (𝑟 / 2)) → ((abs‘(𝑤𝐵)) < 𝐺 ↔ (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐺))
157154, 156anbi12d 464 . . . . . 6 (𝑤 = (𝐵 + (𝑟 / 2)) → ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝐺) ↔ ((𝐵 + (𝑟 / 2)) # 𝐵 ∧ (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐺)))
158157imbrov2fvoveq 5799 . . . . 5 (𝑤 = (𝐵 + (𝑟 / 2)) → (((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝐺) → (abs‘((𝐹𝑤) − 𝑌)) < ((abs‘(𝑋𝑌)) / 2)) ↔ (((𝐵 + (𝑟 / 2)) # 𝐵 ∧ (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐺) → (abs‘((𝐹‘(𝐵 + (𝑟 / 2))) − 𝑌)) < ((abs‘(𝑋𝑌)) / 2))))
159 limcimo.w . . . . . 6 (𝜑 → ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝐺) → (abs‘((𝐹𝑤) − 𝑌)) < ((abs‘(𝑋𝑌)) / 2)))
160159adantr 274 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝐺) → (abs‘((𝐹𝑤) − 𝑌)) < ((abs‘(𝑋𝑌)) / 2)))
161158, 160, 117rspcdva 2794 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (((𝐵 + (𝑟 / 2)) # 𝐵 ∧ (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐺) → (abs‘((𝐹‘(𝐵 + (𝑟 / 2))) − 𝑌)) < ((abs‘(𝑋𝑌)) / 2)))
162112, 153, 161mp2and 429 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘((𝐹‘(𝐵 + (𝑟 / 2))) − 𝑌)) < ((abs‘(𝑋𝑌)) / 2))
16337, 42, 118, 120, 149, 162abs3lemd 10973 . 2 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘(𝑋𝑌)) < (abs‘(𝑋𝑌)))
16427, 163rexlimddv 2554 1 (𝜑 → (abs‘(𝑋𝑌)) < (abs‘(𝑋𝑌)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 697  w3a 962   = wceq 1331  wcel 1480  wral 2416  wrex 2417  {crab 2420  wss 3071  {cpr 3528   class class class wbr 3929   × cxp 4537  dom cdm 4539  cres 4541  ccom 4543  wf 5119  cfv 5123  (class class class)co 5774  infcinf 6870  cc 7618  cr 7619  0cc0 7620   + caddc 7623  *cxr 7799   < clt 7800  cle 7801  cmin 7933  -cneg 7934   # cap 8343   / cdiv 8432  2c2 8771  +crp 9441  abscabs 10769  t crest 12120  ∞Metcxmet 12149  ballcbl 12151  MetOpencmopn 12154   lim climc 12792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-pm 6545  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-xneg 9559  df-xadd 9560  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-rest 12122  df-topgen 12141  df-psmet 12156  df-xmet 12157  df-met 12158  df-bl 12159  df-mopn 12160  df-top 12165  df-topon 12178  df-bases 12210  df-limced 12794
This theorem is referenced by:  limcimo  12803
  Copyright terms: Public domain W3C validator