ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limcimolemlt GIF version

Theorem limcimolemlt 13702
Description: Lemma for limcimo 13703. (Contributed by Jim Kingdon, 3-Jul-2023.)
Hypotheses
Ref Expression
limcflf.f (𝜑𝐹:𝐴⟶ℂ)
limcflf.a (𝜑𝐴 ⊆ ℂ)
limcimo.b (𝜑𝐵 ∈ ℂ)
limcimo.bc (𝜑𝐵𝐶)
limcimo.bs (𝜑𝐵𝑆)
limcimo.c (𝜑𝐶 ∈ (𝐾t 𝑆))
limcimo.s (𝜑𝑆 ∈ {ℝ, ℂ})
limcimo.ca (𝜑 → {𝑞𝐶𝑞 # 𝐵} ⊆ 𝐴)
limcflfcntop.k 𝐾 = (MetOpen‘(abs ∘ − ))
limcimo.d (𝜑𝐷 ∈ ℝ+)
limcimo.x (𝜑𝑋 ∈ (𝐹 lim 𝐵))
limcimo.y (𝜑𝑌 ∈ (𝐹 lim 𝐵))
limcimo.z (𝜑 → ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝐷) → (abs‘((𝐹𝑧) − 𝑋)) < ((abs‘(𝑋𝑌)) / 2)))
limcimo.g (𝜑𝐺 ∈ ℝ+)
limcimo.w (𝜑 → ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝐺) → (abs‘((𝐹𝑤) − 𝑌)) < ((abs‘(𝑋𝑌)) / 2)))
Assertion
Ref Expression
limcimolemlt (𝜑 → (abs‘(𝑋𝑌)) < (abs‘(𝑋𝑌)))
Distinct variable groups:   𝑤,𝐴   𝑧,𝐴   𝐵,𝑞   𝑤,𝐵   𝑧,𝐵   𝐶,𝑞   𝑧,𝐷   𝑤,𝐹   𝑧,𝐹   𝑤,𝐺   𝑤,𝑋   𝑧,𝑋   𝑤,𝑌   𝑧,𝑌
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑞)   𝐴(𝑞)   𝐶(𝑧,𝑤)   𝐷(𝑤,𝑞)   𝑆(𝑧,𝑤,𝑞)   𝐹(𝑞)   𝐺(𝑧,𝑞)   𝐾(𝑧,𝑤,𝑞)   𝑋(𝑞)   𝑌(𝑞)

Proof of Theorem limcimolemlt
Dummy variables 𝑎 𝑏 𝑐 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnxmet 13600 . . . 4 (abs ∘ − ) ∈ (∞Met‘ℂ)
2 ax-resscn 7878 . . . . . . 7 ℝ ⊆ ℂ
3 sseq1 3176 . . . . . . 7 (𝑆 = ℝ → (𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ))
42, 3mpbiri 168 . . . . . 6 (𝑆 = ℝ → 𝑆 ⊆ ℂ)
54adantl 277 . . . . 5 ((𝜑𝑆 = ℝ) → 𝑆 ⊆ ℂ)
6 eqimss 3207 . . . . . 6 (𝑆 = ℂ → 𝑆 ⊆ ℂ)
76adantl 277 . . . . 5 ((𝜑𝑆 = ℂ) → 𝑆 ⊆ ℂ)
8 limcimo.s . . . . . 6 (𝜑𝑆 ∈ {ℝ, ℂ})
9 elpri 3612 . . . . . 6 (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ))
108, 9syl 14 . . . . 5 (𝜑 → (𝑆 = ℝ ∨ 𝑆 = ℂ))
115, 7, 10mpjaodan 798 . . . 4 (𝜑𝑆 ⊆ ℂ)
12 xmetres2 13448 . . . 4 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆))
131, 11, 12sylancr 414 . . 3 (𝜑 → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆))
14 limcimo.c . . . 4 (𝜑𝐶 ∈ (𝐾t 𝑆))
15 eqid 2175 . . . . . 6 ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (𝑆 × 𝑆))
16 limcflfcntop.k . . . . . 6 𝐾 = (MetOpen‘(abs ∘ − ))
17 eqid 2175 . . . . . 6 (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆))) = (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))
1815, 16, 17metrest 13575 . . . . 5 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾t 𝑆) = (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆))))
191, 11, 18sylancr 414 . . . 4 (𝜑 → (𝐾t 𝑆) = (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆))))
2014, 19eleqtrd 2254 . . 3 (𝜑𝐶 ∈ (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆))))
21 limcimo.bc . . 3 (𝜑𝐵𝐶)
22 limcimo.d . . . 4 (𝜑𝐷 ∈ ℝ+)
23 limcimo.g . . . 4 (𝜑𝐺 ∈ ℝ+)
24 rpmincl 11212 . . . 4 ((𝐷 ∈ ℝ+𝐺 ∈ ℝ+) → inf({𝐷, 𝐺}, ℝ, < ) ∈ ℝ+)
2522, 23, 24syl2anc 411 . . 3 (𝜑 → inf({𝐷, 𝐺}, ℝ, < ) ∈ ℝ+)
2617mopni3 13553 . . 3 (((((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆) ∧ 𝐶 ∈ (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆))) ∧ 𝐵𝐶) ∧ inf({𝐷, 𝐺}, ℝ, < ) ∈ ℝ+) → ∃𝑟 ∈ ℝ+ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))
2713, 20, 21, 25, 26syl31anc 1241 . 2 (𝜑 → ∃𝑟 ∈ ℝ+ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))
28 limcimo.x . . . . . 6 (𝜑𝑋 ∈ (𝐹 lim 𝐵))
29 limcrcl 13696 . . . . . . . . 9 (𝑋 ∈ (𝐹 lim 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
3028, 29syl 14 . . . . . . . 8 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
3130simp1d 1009 . . . . . . 7 (𝜑𝐹:dom 𝐹⟶ℂ)
3230simp2d 1010 . . . . . . 7 (𝜑 → dom 𝐹 ⊆ ℂ)
33 limcimo.b . . . . . . 7 (𝜑𝐵 ∈ ℂ)
3431, 32, 33ellimc3ap 13699 . . . . . 6 (𝜑 → (𝑋 ∈ (𝐹 lim 𝐵) ↔ (𝑋 ∈ ℂ ∧ ∀𝑎 ∈ ℝ+𝑏 ∈ ℝ+𝑐 ∈ dom 𝐹((𝑐 # 𝐵 ∧ (abs‘(𝑐𝐵)) < 𝑏) → (abs‘((𝐹𝑐) − 𝑋)) < 𝑎))))
3528, 34mpbid 147 . . . . 5 (𝜑 → (𝑋 ∈ ℂ ∧ ∀𝑎 ∈ ℝ+𝑏 ∈ ℝ+𝑐 ∈ dom 𝐹((𝑐 # 𝐵 ∧ (abs‘(𝑐𝐵)) < 𝑏) → (abs‘((𝐹𝑐) − 𝑋)) < 𝑎)))
3635simpld 112 . . . 4 (𝜑𝑋 ∈ ℂ)
3736adantr 276 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝑋 ∈ ℂ)
38 limcimo.y . . . . . 6 (𝜑𝑌 ∈ (𝐹 lim 𝐵))
3931, 32, 33ellimc3ap 13699 . . . . . 6 (𝜑 → (𝑌 ∈ (𝐹 lim 𝐵) ↔ (𝑌 ∈ ℂ ∧ ∀𝑎 ∈ ℝ+𝑏 ∈ ℝ+𝑐 ∈ dom 𝐹((𝑐 # 𝐵 ∧ (abs‘(𝑐𝐵)) < 𝑏) → (abs‘((𝐹𝑐) − 𝑌)) < 𝑎))))
4038, 39mpbid 147 . . . . 5 (𝜑 → (𝑌 ∈ ℂ ∧ ∀𝑎 ∈ ℝ+𝑏 ∈ ℝ+𝑐 ∈ dom 𝐹((𝑐 # 𝐵 ∧ (abs‘(𝑐𝐵)) < 𝑏) → (abs‘((𝐹𝑐) − 𝑌)) < 𝑎)))
4140simpld 112 . . . 4 (𝜑𝑌 ∈ ℂ)
4241adantr 276 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝑌 ∈ ℂ)
43 limcflf.f . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
4443adantr 276 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝐹:𝐴⟶ℂ)
45 breq1 4001 . . . . . 6 (𝑞 = (𝐵 + (𝑟 / 2)) → (𝑞 # 𝐵 ↔ (𝐵 + (𝑟 / 2)) # 𝐵))
46 simprrr 540 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶)
47 limcimo.bs . . . . . . . . . . . 12 (𝜑𝐵𝑆)
4847adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝐵𝑆)
4947ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℝ) → 𝐵𝑆)
50 simpr 110 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℝ) → 𝑆 = ℝ)
5149, 50eleqtrd 2254 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℝ) → 𝐵 ∈ ℝ)
52 simprl 529 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝑟 ∈ ℝ+)
5352rphalfcld 9678 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝑟 / 2) ∈ ℝ+)
5453adantr 276 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℝ) → (𝑟 / 2) ∈ ℝ+)
5554rpred 9665 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℝ) → (𝑟 / 2) ∈ ℝ)
5651, 55readdcld 7961 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℝ) → (𝐵 + (𝑟 / 2)) ∈ ℝ)
5756, 50eleqtrrd 2255 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℝ) → (𝐵 + (𝑟 / 2)) ∈ 𝑆)
5833ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℂ) → 𝐵 ∈ ℂ)
5953adantr 276 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℂ) → (𝑟 / 2) ∈ ℝ+)
6059rpcnd 9667 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℂ) → (𝑟 / 2) ∈ ℂ)
6158, 60addcld 7951 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℂ) → (𝐵 + (𝑟 / 2)) ∈ ℂ)
62 simpr 110 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℂ) → 𝑆 = ℂ)
6361, 62eleqtrrd 2255 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℂ) → (𝐵 + (𝑟 / 2)) ∈ 𝑆)
6410adantr 276 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝑆 = ℝ ∨ 𝑆 = ℂ))
6557, 63, 64mpjaodan 798 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵 + (𝑟 / 2)) ∈ 𝑆)
6648, 65ovresd 6005 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵((abs ∘ − ) ↾ (𝑆 × 𝑆))(𝐵 + (𝑟 / 2))) = (𝐵(abs ∘ − )(𝐵 + (𝑟 / 2))))
6733adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝐵 ∈ ℂ)
6853rpcnd 9667 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝑟 / 2) ∈ ℂ)
6967, 68addcld 7951 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵 + (𝑟 / 2)) ∈ ℂ)
70 eqid 2175 . . . . . . . . . . . 12 (abs ∘ − ) = (abs ∘ − )
7170cnmetdval 13598 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ (𝐵 + (𝑟 / 2)) ∈ ℂ) → (𝐵(abs ∘ − )(𝐵 + (𝑟 / 2))) = (abs‘(𝐵 − (𝐵 + (𝑟 / 2)))))
7267, 69, 71syl2anc 411 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵(abs ∘ − )(𝐵 + (𝑟 / 2))) = (abs‘(𝐵 − (𝐵 + (𝑟 / 2)))))
7367, 67, 68subsub4d 8273 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((𝐵𝐵) − (𝑟 / 2)) = (𝐵 − (𝐵 + (𝑟 / 2))))
7467subidd 8230 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵𝐵) = 0)
7574oveq1d 5880 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((𝐵𝐵) − (𝑟 / 2)) = (0 − (𝑟 / 2)))
7673, 75eqtr3d 2210 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵 − (𝐵 + (𝑟 / 2))) = (0 − (𝑟 / 2)))
7776fveq2d 5511 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘(𝐵 − (𝐵 + (𝑟 / 2)))) = (abs‘(0 − (𝑟 / 2))))
78 0cnd 7925 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 0 ∈ ℂ)
7978, 68abssubd 11168 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘(0 − (𝑟 / 2))) = (abs‘((𝑟 / 2) − 0)))
8077, 79eqtrd 2208 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘(𝐵 − (𝐵 + (𝑟 / 2)))) = (abs‘((𝑟 / 2) − 0)))
8168subid1d 8231 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((𝑟 / 2) − 0) = (𝑟 / 2))
8281fveq2d 5511 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘((𝑟 / 2) − 0)) = (abs‘(𝑟 / 2)))
8353rpred 9665 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝑟 / 2) ∈ ℝ)
8453rpge0d 9669 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 0 ≤ (𝑟 / 2))
8583, 84absidd 11142 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘(𝑟 / 2)) = (𝑟 / 2))
8680, 82, 853eqtrd 2212 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘(𝐵 − (𝐵 + (𝑟 / 2)))) = (𝑟 / 2))
8766, 72, 863eqtrd 2212 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵((abs ∘ − ) ↾ (𝑆 × 𝑆))(𝐵 + (𝑟 / 2))) = (𝑟 / 2))
88 rphalflt 9652 . . . . . . . . . 10 (𝑟 ∈ ℝ+ → (𝑟 / 2) < 𝑟)
8988ad2antrl 490 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝑟 / 2) < 𝑟)
9087, 89eqbrtrd 4020 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵((abs ∘ − ) ↾ (𝑆 × 𝑆))(𝐵 + (𝑟 / 2))) < 𝑟)
9113adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆))
92 rpxr 9630 . . . . . . . . . 10 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
9392ad2antrl 490 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝑟 ∈ ℝ*)
94 elbl2 13462 . . . . . . . . 9 (((((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆) ∧ 𝑟 ∈ ℝ*) ∧ (𝐵𝑆 ∧ (𝐵 + (𝑟 / 2)) ∈ 𝑆)) → ((𝐵 + (𝑟 / 2)) ∈ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ↔ (𝐵((abs ∘ − ) ↾ (𝑆 × 𝑆))(𝐵 + (𝑟 / 2))) < 𝑟))
9591, 93, 48, 65, 94syl22anc 1239 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((𝐵 + (𝑟 / 2)) ∈ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ↔ (𝐵((abs ∘ − ) ↾ (𝑆 × 𝑆))(𝐵 + (𝑟 / 2))) < 𝑟))
9690, 95mpbird 167 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵 + (𝑟 / 2)) ∈ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟))
9746, 96sseldd 3154 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵 + (𝑟 / 2)) ∈ 𝐶)
9853rpap0d 9671 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝑟 / 2) # 0)
9967, 67negsubdid 8257 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → -(𝐵𝐵) = (-𝐵 + 𝐵))
10074negeqd 8126 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → -(𝐵𝐵) = -0)
101 neg0 8177 . . . . . . . . . . . 12 -0 = 0
102100, 101eqtrdi 2224 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → -(𝐵𝐵) = 0)
10399, 102eqtr3d 2210 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (-𝐵 + 𝐵) = 0)
104103oveq1d 5880 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((-𝐵 + 𝐵) + (𝑟 / 2)) = (0 + (𝑟 / 2)))
10567negcld 8229 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → -𝐵 ∈ ℂ)
106105, 67, 68addassd 7954 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((-𝐵 + 𝐵) + (𝑟 / 2)) = (-𝐵 + (𝐵 + (𝑟 / 2))))
10768addid2d 8081 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (0 + (𝑟 / 2)) = (𝑟 / 2))
108104, 106, 1073eqtr3d 2216 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (-𝐵 + (𝐵 + (𝑟 / 2))) = (𝑟 / 2))
10998, 108, 1033brtr4d 4030 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (-𝐵 + (𝐵 + (𝑟 / 2))) # (-𝐵 + 𝐵))
110 apadd2 8540 . . . . . . . 8 (((𝐵 + (𝑟 / 2)) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ -𝐵 ∈ ℂ) → ((𝐵 + (𝑟 / 2)) # 𝐵 ↔ (-𝐵 + (𝐵 + (𝑟 / 2))) # (-𝐵 + 𝐵)))
11169, 67, 105, 110syl3anc 1238 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((𝐵 + (𝑟 / 2)) # 𝐵 ↔ (-𝐵 + (𝐵 + (𝑟 / 2))) # (-𝐵 + 𝐵)))
112109, 111mpbird 167 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵 + (𝑟 / 2)) # 𝐵)
11345, 97, 112elrabd 2893 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵 + (𝑟 / 2)) ∈ {𝑞𝐶𝑞 # 𝐵})
114 limcimo.ca . . . . . . 7 (𝜑 → {𝑞𝐶𝑞 # 𝐵} ⊆ 𝐴)
115114sseld 3152 . . . . . 6 (𝜑 → ((𝐵 + (𝑟 / 2)) ∈ {𝑞𝐶𝑞 # 𝐵} → (𝐵 + (𝑟 / 2)) ∈ 𝐴))
116115adantr 276 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((𝐵 + (𝑟 / 2)) ∈ {𝑞𝐶𝑞 # 𝐵} → (𝐵 + (𝑟 / 2)) ∈ 𝐴))
117113, 116mpd 13 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵 + (𝑟 / 2)) ∈ 𝐴)
11844, 117ffvelcdmd 5644 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐹‘(𝐵 + (𝑟 / 2))) ∈ ℂ)
11937, 42subcld 8242 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝑋𝑌) ∈ ℂ)
120119abscld 11156 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘(𝑋𝑌)) ∈ ℝ)
12137, 118abssubd 11168 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘(𝑋 − (𝐹‘(𝐵 + (𝑟 / 2))))) = (abs‘((𝐹‘(𝐵 + (𝑟 / 2))) − 𝑋)))
12269, 67subcld 8242 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((𝐵 + (𝑟 / 2)) − 𝐵) ∈ ℂ)
123122abscld 11156 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) ∈ ℝ)
12452rpred 9665 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝑟 ∈ ℝ)
12522rpred 9665 . . . . . . 7 (𝜑𝐷 ∈ ℝ)
126125adantr 276 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝐷 ∈ ℝ)
12767, 68pncan2d 8244 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((𝐵 + (𝑟 / 2)) − 𝐵) = (𝑟 / 2))
128127fveq2d 5511 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) = (abs‘(𝑟 / 2)))
129128, 85eqtrd 2208 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) = (𝑟 / 2))
130129, 89eqbrtrd 4020 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝑟)
13123rpred 9665 . . . . . . . . 9 (𝜑𝐺 ∈ ℝ)
132131adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝐺 ∈ ℝ)
133 mincl 11205 . . . . . . . 8 ((𝐷 ∈ ℝ ∧ 𝐺 ∈ ℝ) → inf({𝐷, 𝐺}, ℝ, < ) ∈ ℝ)
134126, 132, 133syl2anc 411 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → inf({𝐷, 𝐺}, ℝ, < ) ∈ ℝ)
135 simprrl 539 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝑟 < inf({𝐷, 𝐺}, ℝ, < ))
136 min1inf 11206 . . . . . . . 8 ((𝐷 ∈ ℝ ∧ 𝐺 ∈ ℝ) → inf({𝐷, 𝐺}, ℝ, < ) ≤ 𝐷)
137126, 132, 136syl2anc 411 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → inf({𝐷, 𝐺}, ℝ, < ) ≤ 𝐷)
138124, 134, 126, 135, 137ltletrd 8354 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝑟 < 𝐷)
139123, 124, 126, 130, 138lttrd 8057 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐷)
140 breq1 4001 . . . . . . . 8 (𝑧 = (𝐵 + (𝑟 / 2)) → (𝑧 # 𝐵 ↔ (𝐵 + (𝑟 / 2)) # 𝐵))
141 fvoveq1 5888 . . . . . . . . 9 (𝑧 = (𝐵 + (𝑟 / 2)) → (abs‘(𝑧𝐵)) = (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)))
142141breq1d 4008 . . . . . . . 8 (𝑧 = (𝐵 + (𝑟 / 2)) → ((abs‘(𝑧𝐵)) < 𝐷 ↔ (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐷))
143140, 142anbi12d 473 . . . . . . 7 (𝑧 = (𝐵 + (𝑟 / 2)) → ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝐷) ↔ ((𝐵 + (𝑟 / 2)) # 𝐵 ∧ (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐷)))
144143imbrov2fvoveq 5890 . . . . . 6 (𝑧 = (𝐵 + (𝑟 / 2)) → (((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝐷) → (abs‘((𝐹𝑧) − 𝑋)) < ((abs‘(𝑋𝑌)) / 2)) ↔ (((𝐵 + (𝑟 / 2)) # 𝐵 ∧ (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐷) → (abs‘((𝐹‘(𝐵 + (𝑟 / 2))) − 𝑋)) < ((abs‘(𝑋𝑌)) / 2))))
145 limcimo.z . . . . . . 7 (𝜑 → ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝐷) → (abs‘((𝐹𝑧) − 𝑋)) < ((abs‘(𝑋𝑌)) / 2)))
146145adantr 276 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝐷) → (abs‘((𝐹𝑧) − 𝑋)) < ((abs‘(𝑋𝑌)) / 2)))
147144, 146, 117rspcdva 2844 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (((𝐵 + (𝑟 / 2)) # 𝐵 ∧ (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐷) → (abs‘((𝐹‘(𝐵 + (𝑟 / 2))) − 𝑋)) < ((abs‘(𝑋𝑌)) / 2)))
148112, 139, 147mp2and 433 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘((𝐹‘(𝐵 + (𝑟 / 2))) − 𝑋)) < ((abs‘(𝑋𝑌)) / 2))
149121, 148eqbrtrd 4020 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘(𝑋 − (𝐹‘(𝐵 + (𝑟 / 2))))) < ((abs‘(𝑋𝑌)) / 2))
150 min2inf 11207 . . . . . . 7 ((𝐷 ∈ ℝ ∧ 𝐺 ∈ ℝ) → inf({𝐷, 𝐺}, ℝ, < ) ≤ 𝐺)
151126, 132, 150syl2anc 411 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → inf({𝐷, 𝐺}, ℝ, < ) ≤ 𝐺)
152124, 134, 132, 135, 151ltletrd 8354 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝑟 < 𝐺)
153123, 124, 132, 130, 152lttrd 8057 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐺)
154 breq1 4001 . . . . . . 7 (𝑤 = (𝐵 + (𝑟 / 2)) → (𝑤 # 𝐵 ↔ (𝐵 + (𝑟 / 2)) # 𝐵))
155 fvoveq1 5888 . . . . . . . 8 (𝑤 = (𝐵 + (𝑟 / 2)) → (abs‘(𝑤𝐵)) = (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)))
156155breq1d 4008 . . . . . . 7 (𝑤 = (𝐵 + (𝑟 / 2)) → ((abs‘(𝑤𝐵)) < 𝐺 ↔ (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐺))
157154, 156anbi12d 473 . . . . . 6 (𝑤 = (𝐵 + (𝑟 / 2)) → ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝐺) ↔ ((𝐵 + (𝑟 / 2)) # 𝐵 ∧ (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐺)))
158157imbrov2fvoveq 5890 . . . . 5 (𝑤 = (𝐵 + (𝑟 / 2)) → (((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝐺) → (abs‘((𝐹𝑤) − 𝑌)) < ((abs‘(𝑋𝑌)) / 2)) ↔ (((𝐵 + (𝑟 / 2)) # 𝐵 ∧ (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐺) → (abs‘((𝐹‘(𝐵 + (𝑟 / 2))) − 𝑌)) < ((abs‘(𝑋𝑌)) / 2))))
159 limcimo.w . . . . . 6 (𝜑 → ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝐺) → (abs‘((𝐹𝑤) − 𝑌)) < ((abs‘(𝑋𝑌)) / 2)))
160159adantr 276 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝐺) → (abs‘((𝐹𝑤) − 𝑌)) < ((abs‘(𝑋𝑌)) / 2)))
161158, 160, 117rspcdva 2844 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (((𝐵 + (𝑟 / 2)) # 𝐵 ∧ (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐺) → (abs‘((𝐹‘(𝐵 + (𝑟 / 2))) − 𝑌)) < ((abs‘(𝑋𝑌)) / 2)))
162112, 153, 161mp2and 433 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘((𝐹‘(𝐵 + (𝑟 / 2))) − 𝑌)) < ((abs‘(𝑋𝑌)) / 2))
16337, 42, 118, 120, 149, 162abs3lemd 11176 . 2 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘(𝑋𝑌)) < (abs‘(𝑋𝑌)))
16427, 163rexlimddv 2597 1 (𝜑 → (abs‘(𝑋𝑌)) < (abs‘(𝑋𝑌)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 708  w3a 978   = wceq 1353  wcel 2146  wral 2453  wrex 2454  {crab 2457  wss 3127  {cpr 3590   class class class wbr 3998   × cxp 4618  dom cdm 4620  cres 4622  ccom 4624  wf 5204  cfv 5208  (class class class)co 5865  infcinf 6972  cc 7784  cr 7785  0cc0 7786   + caddc 7789  *cxr 7965   < clt 7966  cle 7967  cmin 8102  -cneg 8103   # cap 8512   / cdiv 8601  2c2 8941  +crp 9622  abscabs 10972  t crest 12608  ∞Metcxmet 13049  ballcbl 13051  MetOpencmopn 13054   lim climc 13692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905  ax-caucvg 7906
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-isom 5217  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-map 6640  df-pm 6641  df-sup 6973  df-inf 6974  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8602  df-inn 8891  df-2 8949  df-3 8950  df-4 8951  df-n0 9148  df-z 9225  df-uz 9500  df-q 9591  df-rp 9623  df-xneg 9741  df-xadd 9742  df-seqfrec 10414  df-exp 10488  df-cj 10817  df-re 10818  df-im 10819  df-rsqrt 10973  df-abs 10974  df-rest 12610  df-topgen 12629  df-psmet 13056  df-xmet 13057  df-met 13058  df-bl 13059  df-mopn 13060  df-top 13065  df-topon 13078  df-bases 13110  df-limced 13694
This theorem is referenced by:  limcimo  13703
  Copyright terms: Public domain W3C validator