ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limcimolemlt GIF version

Theorem limcimolemlt 15251
Description: Lemma for limcimo 15252. (Contributed by Jim Kingdon, 3-Jul-2023.)
Hypotheses
Ref Expression
limcflf.f (𝜑𝐹:𝐴⟶ℂ)
limcflf.a (𝜑𝐴 ⊆ ℂ)
limcimo.b (𝜑𝐵 ∈ ℂ)
limcimo.bc (𝜑𝐵𝐶)
limcimo.bs (𝜑𝐵𝑆)
limcimo.c (𝜑𝐶 ∈ (𝐾t 𝑆))
limcimo.s (𝜑𝑆 ∈ {ℝ, ℂ})
limcimo.ca (𝜑 → {𝑞𝐶𝑞 # 𝐵} ⊆ 𝐴)
limcflfcntop.k 𝐾 = (MetOpen‘(abs ∘ − ))
limcimo.d (𝜑𝐷 ∈ ℝ+)
limcimo.x (𝜑𝑋 ∈ (𝐹 lim 𝐵))
limcimo.y (𝜑𝑌 ∈ (𝐹 lim 𝐵))
limcimo.z (𝜑 → ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝐷) → (abs‘((𝐹𝑧) − 𝑋)) < ((abs‘(𝑋𝑌)) / 2)))
limcimo.g (𝜑𝐺 ∈ ℝ+)
limcimo.w (𝜑 → ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝐺) → (abs‘((𝐹𝑤) − 𝑌)) < ((abs‘(𝑋𝑌)) / 2)))
Assertion
Ref Expression
limcimolemlt (𝜑 → (abs‘(𝑋𝑌)) < (abs‘(𝑋𝑌)))
Distinct variable groups:   𝑤,𝐴   𝑧,𝐴   𝐵,𝑞   𝑤,𝐵   𝑧,𝐵   𝐶,𝑞   𝑧,𝐷   𝑤,𝐹   𝑧,𝐹   𝑤,𝐺   𝑤,𝑋   𝑧,𝑋   𝑤,𝑌   𝑧,𝑌
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑞)   𝐴(𝑞)   𝐶(𝑧,𝑤)   𝐷(𝑤,𝑞)   𝑆(𝑧,𝑤,𝑞)   𝐹(𝑞)   𝐺(𝑧,𝑞)   𝐾(𝑧,𝑤,𝑞)   𝑋(𝑞)   𝑌(𝑞)

Proof of Theorem limcimolemlt
Dummy variables 𝑎 𝑏 𝑐 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnxmet 15118 . . . 4 (abs ∘ − ) ∈ (∞Met‘ℂ)
2 ax-resscn 8052 . . . . . . 7 ℝ ⊆ ℂ
3 sseq1 3224 . . . . . . 7 (𝑆 = ℝ → (𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ))
42, 3mpbiri 168 . . . . . 6 (𝑆 = ℝ → 𝑆 ⊆ ℂ)
54adantl 277 . . . . 5 ((𝜑𝑆 = ℝ) → 𝑆 ⊆ ℂ)
6 eqimss 3255 . . . . . 6 (𝑆 = ℂ → 𝑆 ⊆ ℂ)
76adantl 277 . . . . 5 ((𝜑𝑆 = ℂ) → 𝑆 ⊆ ℂ)
8 limcimo.s . . . . . 6 (𝜑𝑆 ∈ {ℝ, ℂ})
9 elpri 3666 . . . . . 6 (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ))
108, 9syl 14 . . . . 5 (𝜑 → (𝑆 = ℝ ∨ 𝑆 = ℂ))
115, 7, 10mpjaodan 800 . . . 4 (𝜑𝑆 ⊆ ℂ)
12 xmetres2 14966 . . . 4 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆))
131, 11, 12sylancr 414 . . 3 (𝜑 → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆))
14 limcimo.c . . . 4 (𝜑𝐶 ∈ (𝐾t 𝑆))
15 eqid 2207 . . . . . 6 ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (𝑆 × 𝑆))
16 limcflfcntop.k . . . . . 6 𝐾 = (MetOpen‘(abs ∘ − ))
17 eqid 2207 . . . . . 6 (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆))) = (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))
1815, 16, 17metrest 15093 . . . . 5 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾t 𝑆) = (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆))))
191, 11, 18sylancr 414 . . . 4 (𝜑 → (𝐾t 𝑆) = (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆))))
2014, 19eleqtrd 2286 . . 3 (𝜑𝐶 ∈ (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆))))
21 limcimo.bc . . 3 (𝜑𝐵𝐶)
22 limcimo.d . . . 4 (𝜑𝐷 ∈ ℝ+)
23 limcimo.g . . . 4 (𝜑𝐺 ∈ ℝ+)
24 rpmincl 11664 . . . 4 ((𝐷 ∈ ℝ+𝐺 ∈ ℝ+) → inf({𝐷, 𝐺}, ℝ, < ) ∈ ℝ+)
2522, 23, 24syl2anc 411 . . 3 (𝜑 → inf({𝐷, 𝐺}, ℝ, < ) ∈ ℝ+)
2617mopni3 15071 . . 3 (((((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆) ∧ 𝐶 ∈ (MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆))) ∧ 𝐵𝐶) ∧ inf({𝐷, 𝐺}, ℝ, < ) ∈ ℝ+) → ∃𝑟 ∈ ℝ+ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))
2713, 20, 21, 25, 26syl31anc 1253 . 2 (𝜑 → ∃𝑟 ∈ ℝ+ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))
28 limcimo.x . . . . . 6 (𝜑𝑋 ∈ (𝐹 lim 𝐵))
29 limcrcl 15245 . . . . . . . . 9 (𝑋 ∈ (𝐹 lim 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
3028, 29syl 14 . . . . . . . 8 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
3130simp1d 1012 . . . . . . 7 (𝜑𝐹:dom 𝐹⟶ℂ)
3230simp2d 1013 . . . . . . 7 (𝜑 → dom 𝐹 ⊆ ℂ)
33 limcimo.b . . . . . . 7 (𝜑𝐵 ∈ ℂ)
3431, 32, 33ellimc3ap 15248 . . . . . 6 (𝜑 → (𝑋 ∈ (𝐹 lim 𝐵) ↔ (𝑋 ∈ ℂ ∧ ∀𝑎 ∈ ℝ+𝑏 ∈ ℝ+𝑐 ∈ dom 𝐹((𝑐 # 𝐵 ∧ (abs‘(𝑐𝐵)) < 𝑏) → (abs‘((𝐹𝑐) − 𝑋)) < 𝑎))))
3528, 34mpbid 147 . . . . 5 (𝜑 → (𝑋 ∈ ℂ ∧ ∀𝑎 ∈ ℝ+𝑏 ∈ ℝ+𝑐 ∈ dom 𝐹((𝑐 # 𝐵 ∧ (abs‘(𝑐𝐵)) < 𝑏) → (abs‘((𝐹𝑐) − 𝑋)) < 𝑎)))
3635simpld 112 . . . 4 (𝜑𝑋 ∈ ℂ)
3736adantr 276 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝑋 ∈ ℂ)
38 limcimo.y . . . . . 6 (𝜑𝑌 ∈ (𝐹 lim 𝐵))
3931, 32, 33ellimc3ap 15248 . . . . . 6 (𝜑 → (𝑌 ∈ (𝐹 lim 𝐵) ↔ (𝑌 ∈ ℂ ∧ ∀𝑎 ∈ ℝ+𝑏 ∈ ℝ+𝑐 ∈ dom 𝐹((𝑐 # 𝐵 ∧ (abs‘(𝑐𝐵)) < 𝑏) → (abs‘((𝐹𝑐) − 𝑌)) < 𝑎))))
4038, 39mpbid 147 . . . . 5 (𝜑 → (𝑌 ∈ ℂ ∧ ∀𝑎 ∈ ℝ+𝑏 ∈ ℝ+𝑐 ∈ dom 𝐹((𝑐 # 𝐵 ∧ (abs‘(𝑐𝐵)) < 𝑏) → (abs‘((𝐹𝑐) − 𝑌)) < 𝑎)))
4140simpld 112 . . . 4 (𝜑𝑌 ∈ ℂ)
4241adantr 276 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝑌 ∈ ℂ)
43 limcflf.f . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
4443adantr 276 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝐹:𝐴⟶ℂ)
45 breq1 4062 . . . . . 6 (𝑞 = (𝐵 + (𝑟 / 2)) → (𝑞 # 𝐵 ↔ (𝐵 + (𝑟 / 2)) # 𝐵))
46 simprrr 540 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶)
47 limcimo.bs . . . . . . . . . . . 12 (𝜑𝐵𝑆)
4847adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝐵𝑆)
4947ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℝ) → 𝐵𝑆)
50 simpr 110 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℝ) → 𝑆 = ℝ)
5149, 50eleqtrd 2286 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℝ) → 𝐵 ∈ ℝ)
52 simprl 529 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝑟 ∈ ℝ+)
5352rphalfcld 9866 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝑟 / 2) ∈ ℝ+)
5453adantr 276 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℝ) → (𝑟 / 2) ∈ ℝ+)
5554rpred 9853 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℝ) → (𝑟 / 2) ∈ ℝ)
5651, 55readdcld 8137 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℝ) → (𝐵 + (𝑟 / 2)) ∈ ℝ)
5756, 50eleqtrrd 2287 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℝ) → (𝐵 + (𝑟 / 2)) ∈ 𝑆)
5833ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℂ) → 𝐵 ∈ ℂ)
5953adantr 276 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℂ) → (𝑟 / 2) ∈ ℝ+)
6059rpcnd 9855 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℂ) → (𝑟 / 2) ∈ ℂ)
6158, 60addcld 8127 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℂ) → (𝐵 + (𝑟 / 2)) ∈ ℂ)
62 simpr 110 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℂ) → 𝑆 = ℂ)
6361, 62eleqtrrd 2287 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℂ) → (𝐵 + (𝑟 / 2)) ∈ 𝑆)
6410adantr 276 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝑆 = ℝ ∨ 𝑆 = ℂ))
6557, 63, 64mpjaodan 800 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵 + (𝑟 / 2)) ∈ 𝑆)
6648, 65ovresd 6110 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵((abs ∘ − ) ↾ (𝑆 × 𝑆))(𝐵 + (𝑟 / 2))) = (𝐵(abs ∘ − )(𝐵 + (𝑟 / 2))))
6733adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝐵 ∈ ℂ)
6853rpcnd 9855 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝑟 / 2) ∈ ℂ)
6967, 68addcld 8127 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵 + (𝑟 / 2)) ∈ ℂ)
70 eqid 2207 . . . . . . . . . . . 12 (abs ∘ − ) = (abs ∘ − )
7170cnmetdval 15116 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ (𝐵 + (𝑟 / 2)) ∈ ℂ) → (𝐵(abs ∘ − )(𝐵 + (𝑟 / 2))) = (abs‘(𝐵 − (𝐵 + (𝑟 / 2)))))
7267, 69, 71syl2anc 411 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵(abs ∘ − )(𝐵 + (𝑟 / 2))) = (abs‘(𝐵 − (𝐵 + (𝑟 / 2)))))
7367, 67, 68subsub4d 8449 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((𝐵𝐵) − (𝑟 / 2)) = (𝐵 − (𝐵 + (𝑟 / 2))))
7467subidd 8406 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵𝐵) = 0)
7574oveq1d 5982 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((𝐵𝐵) − (𝑟 / 2)) = (0 − (𝑟 / 2)))
7673, 75eqtr3d 2242 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵 − (𝐵 + (𝑟 / 2))) = (0 − (𝑟 / 2)))
7776fveq2d 5603 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘(𝐵 − (𝐵 + (𝑟 / 2)))) = (abs‘(0 − (𝑟 / 2))))
78 0cnd 8100 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 0 ∈ ℂ)
7978, 68abssubd 11619 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘(0 − (𝑟 / 2))) = (abs‘((𝑟 / 2) − 0)))
8077, 79eqtrd 2240 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘(𝐵 − (𝐵 + (𝑟 / 2)))) = (abs‘((𝑟 / 2) − 0)))
8168subid1d 8407 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((𝑟 / 2) − 0) = (𝑟 / 2))
8281fveq2d 5603 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘((𝑟 / 2) − 0)) = (abs‘(𝑟 / 2)))
8353rpred 9853 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝑟 / 2) ∈ ℝ)
8453rpge0d 9857 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 0 ≤ (𝑟 / 2))
8583, 84absidd 11593 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘(𝑟 / 2)) = (𝑟 / 2))
8680, 82, 853eqtrd 2244 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘(𝐵 − (𝐵 + (𝑟 / 2)))) = (𝑟 / 2))
8766, 72, 863eqtrd 2244 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵((abs ∘ − ) ↾ (𝑆 × 𝑆))(𝐵 + (𝑟 / 2))) = (𝑟 / 2))
88 rphalflt 9840 . . . . . . . . . 10 (𝑟 ∈ ℝ+ → (𝑟 / 2) < 𝑟)
8988ad2antrl 490 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝑟 / 2) < 𝑟)
9087, 89eqbrtrd 4081 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵((abs ∘ − ) ↾ (𝑆 × 𝑆))(𝐵 + (𝑟 / 2))) < 𝑟)
9113adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆))
92 rpxr 9818 . . . . . . . . . 10 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
9392ad2antrl 490 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝑟 ∈ ℝ*)
94 elbl2 14980 . . . . . . . . 9 (((((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆) ∧ 𝑟 ∈ ℝ*) ∧ (𝐵𝑆 ∧ (𝐵 + (𝑟 / 2)) ∈ 𝑆)) → ((𝐵 + (𝑟 / 2)) ∈ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ↔ (𝐵((abs ∘ − ) ↾ (𝑆 × 𝑆))(𝐵 + (𝑟 / 2))) < 𝑟))
9591, 93, 48, 65, 94syl22anc 1251 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((𝐵 + (𝑟 / 2)) ∈ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ↔ (𝐵((abs ∘ − ) ↾ (𝑆 × 𝑆))(𝐵 + (𝑟 / 2))) < 𝑟))
9690, 95mpbird 167 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵 + (𝑟 / 2)) ∈ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟))
9746, 96sseldd 3202 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵 + (𝑟 / 2)) ∈ 𝐶)
9853rpap0d 9859 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝑟 / 2) # 0)
9967, 67negsubdid 8433 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → -(𝐵𝐵) = (-𝐵 + 𝐵))
10074negeqd 8302 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → -(𝐵𝐵) = -0)
101 neg0 8353 . . . . . . . . . . . 12 -0 = 0
102100, 101eqtrdi 2256 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → -(𝐵𝐵) = 0)
10399, 102eqtr3d 2242 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (-𝐵 + 𝐵) = 0)
104103oveq1d 5982 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((-𝐵 + 𝐵) + (𝑟 / 2)) = (0 + (𝑟 / 2)))
10567negcld 8405 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → -𝐵 ∈ ℂ)
106105, 67, 68addassd 8130 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((-𝐵 + 𝐵) + (𝑟 / 2)) = (-𝐵 + (𝐵 + (𝑟 / 2))))
10768addlidd 8257 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (0 + (𝑟 / 2)) = (𝑟 / 2))
108104, 106, 1073eqtr3d 2248 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (-𝐵 + (𝐵 + (𝑟 / 2))) = (𝑟 / 2))
10998, 108, 1033brtr4d 4091 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (-𝐵 + (𝐵 + (𝑟 / 2))) # (-𝐵 + 𝐵))
110 apadd2 8717 . . . . . . . 8 (((𝐵 + (𝑟 / 2)) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ -𝐵 ∈ ℂ) → ((𝐵 + (𝑟 / 2)) # 𝐵 ↔ (-𝐵 + (𝐵 + (𝑟 / 2))) # (-𝐵 + 𝐵)))
11169, 67, 105, 110syl3anc 1250 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((𝐵 + (𝑟 / 2)) # 𝐵 ↔ (-𝐵 + (𝐵 + (𝑟 / 2))) # (-𝐵 + 𝐵)))
112109, 111mpbird 167 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵 + (𝑟 / 2)) # 𝐵)
11345, 97, 112elrabd 2938 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵 + (𝑟 / 2)) ∈ {𝑞𝐶𝑞 # 𝐵})
114 limcimo.ca . . . . . . 7 (𝜑 → {𝑞𝐶𝑞 # 𝐵} ⊆ 𝐴)
115114sseld 3200 . . . . . 6 (𝜑 → ((𝐵 + (𝑟 / 2)) ∈ {𝑞𝐶𝑞 # 𝐵} → (𝐵 + (𝑟 / 2)) ∈ 𝐴))
116115adantr 276 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((𝐵 + (𝑟 / 2)) ∈ {𝑞𝐶𝑞 # 𝐵} → (𝐵 + (𝑟 / 2)) ∈ 𝐴))
117113, 116mpd 13 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵 + (𝑟 / 2)) ∈ 𝐴)
11844, 117ffvelcdmd 5739 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐹‘(𝐵 + (𝑟 / 2))) ∈ ℂ)
11937, 42subcld 8418 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝑋𝑌) ∈ ℂ)
120119abscld 11607 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘(𝑋𝑌)) ∈ ℝ)
12137, 118abssubd 11619 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘(𝑋 − (𝐹‘(𝐵 + (𝑟 / 2))))) = (abs‘((𝐹‘(𝐵 + (𝑟 / 2))) − 𝑋)))
12269, 67subcld 8418 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((𝐵 + (𝑟 / 2)) − 𝐵) ∈ ℂ)
123122abscld 11607 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) ∈ ℝ)
12452rpred 9853 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝑟 ∈ ℝ)
12522rpred 9853 . . . . . . 7 (𝜑𝐷 ∈ ℝ)
126125adantr 276 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝐷 ∈ ℝ)
12767, 68pncan2d 8420 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((𝐵 + (𝑟 / 2)) − 𝐵) = (𝑟 / 2))
128127fveq2d 5603 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) = (abs‘(𝑟 / 2)))
129128, 85eqtrd 2240 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) = (𝑟 / 2))
130129, 89eqbrtrd 4081 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝑟)
13123rpred 9853 . . . . . . . . 9 (𝜑𝐺 ∈ ℝ)
132131adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝐺 ∈ ℝ)
133 mincl 11657 . . . . . . . 8 ((𝐷 ∈ ℝ ∧ 𝐺 ∈ ℝ) → inf({𝐷, 𝐺}, ℝ, < ) ∈ ℝ)
134126, 132, 133syl2anc 411 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → inf({𝐷, 𝐺}, ℝ, < ) ∈ ℝ)
135 simprrl 539 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝑟 < inf({𝐷, 𝐺}, ℝ, < ))
136 min1inf 11658 . . . . . . . 8 ((𝐷 ∈ ℝ ∧ 𝐺 ∈ ℝ) → inf({𝐷, 𝐺}, ℝ, < ) ≤ 𝐷)
137126, 132, 136syl2anc 411 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → inf({𝐷, 𝐺}, ℝ, < ) ≤ 𝐷)
138124, 134, 126, 135, 137ltletrd 8531 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝑟 < 𝐷)
139123, 124, 126, 130, 138lttrd 8233 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐷)
140 breq1 4062 . . . . . . . 8 (𝑧 = (𝐵 + (𝑟 / 2)) → (𝑧 # 𝐵 ↔ (𝐵 + (𝑟 / 2)) # 𝐵))
141 fvoveq1 5990 . . . . . . . . 9 (𝑧 = (𝐵 + (𝑟 / 2)) → (abs‘(𝑧𝐵)) = (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)))
142141breq1d 4069 . . . . . . . 8 (𝑧 = (𝐵 + (𝑟 / 2)) → ((abs‘(𝑧𝐵)) < 𝐷 ↔ (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐷))
143140, 142anbi12d 473 . . . . . . 7 (𝑧 = (𝐵 + (𝑟 / 2)) → ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝐷) ↔ ((𝐵 + (𝑟 / 2)) # 𝐵 ∧ (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐷)))
144143imbrov2fvoveq 5992 . . . . . 6 (𝑧 = (𝐵 + (𝑟 / 2)) → (((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝐷) → (abs‘((𝐹𝑧) − 𝑋)) < ((abs‘(𝑋𝑌)) / 2)) ↔ (((𝐵 + (𝑟 / 2)) # 𝐵 ∧ (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐷) → (abs‘((𝐹‘(𝐵 + (𝑟 / 2))) − 𝑋)) < ((abs‘(𝑋𝑌)) / 2))))
145 limcimo.z . . . . . . 7 (𝜑 → ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝐷) → (abs‘((𝐹𝑧) − 𝑋)) < ((abs‘(𝑋𝑌)) / 2)))
146145adantr 276 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝐷) → (abs‘((𝐹𝑧) − 𝑋)) < ((abs‘(𝑋𝑌)) / 2)))
147144, 146, 117rspcdva 2889 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (((𝐵 + (𝑟 / 2)) # 𝐵 ∧ (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐷) → (abs‘((𝐹‘(𝐵 + (𝑟 / 2))) − 𝑋)) < ((abs‘(𝑋𝑌)) / 2)))
148112, 139, 147mp2and 433 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘((𝐹‘(𝐵 + (𝑟 / 2))) − 𝑋)) < ((abs‘(𝑋𝑌)) / 2))
149121, 148eqbrtrd 4081 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘(𝑋 − (𝐹‘(𝐵 + (𝑟 / 2))))) < ((abs‘(𝑋𝑌)) / 2))
150 min2inf 11659 . . . . . . 7 ((𝐷 ∈ ℝ ∧ 𝐺 ∈ ℝ) → inf({𝐷, 𝐺}, ℝ, < ) ≤ 𝐺)
151126, 132, 150syl2anc 411 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → inf({𝐷, 𝐺}, ℝ, < ) ≤ 𝐺)
152124, 134, 132, 135, 151ltletrd 8531 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝑟 < 𝐺)
153123, 124, 132, 130, 152lttrd 8233 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐺)
154 breq1 4062 . . . . . . 7 (𝑤 = (𝐵 + (𝑟 / 2)) → (𝑤 # 𝐵 ↔ (𝐵 + (𝑟 / 2)) # 𝐵))
155 fvoveq1 5990 . . . . . . . 8 (𝑤 = (𝐵 + (𝑟 / 2)) → (abs‘(𝑤𝐵)) = (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)))
156155breq1d 4069 . . . . . . 7 (𝑤 = (𝐵 + (𝑟 / 2)) → ((abs‘(𝑤𝐵)) < 𝐺 ↔ (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐺))
157154, 156anbi12d 473 . . . . . 6 (𝑤 = (𝐵 + (𝑟 / 2)) → ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝐺) ↔ ((𝐵 + (𝑟 / 2)) # 𝐵 ∧ (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐺)))
158157imbrov2fvoveq 5992 . . . . 5 (𝑤 = (𝐵 + (𝑟 / 2)) → (((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝐺) → (abs‘((𝐹𝑤) − 𝑌)) < ((abs‘(𝑋𝑌)) / 2)) ↔ (((𝐵 + (𝑟 / 2)) # 𝐵 ∧ (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐺) → (abs‘((𝐹‘(𝐵 + (𝑟 / 2))) − 𝑌)) < ((abs‘(𝑋𝑌)) / 2))))
159 limcimo.w . . . . . 6 (𝜑 → ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝐺) → (abs‘((𝐹𝑤) − 𝑌)) < ((abs‘(𝑋𝑌)) / 2)))
160159adantr 276 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ∀𝑤𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤𝐵)) < 𝐺) → (abs‘((𝐹𝑤) − 𝑌)) < ((abs‘(𝑋𝑌)) / 2)))
161158, 160, 117rspcdva 2889 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (((𝐵 + (𝑟 / 2)) # 𝐵 ∧ (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐺) → (abs‘((𝐹‘(𝐵 + (𝑟 / 2))) − 𝑌)) < ((abs‘(𝑋𝑌)) / 2)))
162112, 153, 161mp2and 433 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘((𝐹‘(𝐵 + (𝑟 / 2))) − 𝑌)) < ((abs‘(𝑋𝑌)) / 2))
16337, 42, 118, 120, 149, 162abs3lemd 11627 . 2 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘(𝑋𝑌)) < (abs‘(𝑋𝑌)))
16427, 163rexlimddv 2630 1 (𝜑 → (abs‘(𝑋𝑌)) < (abs‘(𝑋𝑌)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710  w3a 981   = wceq 1373  wcel 2178  wral 2486  wrex 2487  {crab 2490  wss 3174  {cpr 3644   class class class wbr 4059   × cxp 4691  dom cdm 4693  cres 4695  ccom 4697  wf 5286  cfv 5290  (class class class)co 5967  infcinf 7111  cc 7958  cr 7959  0cc0 7960   + caddc 7963  *cxr 8141   < clt 8142  cle 8143  cmin 8278  -cneg 8279   # cap 8689   / cdiv 8780  2c2 9122  +crp 9810  abscabs 11423  t crest 13186  ∞Metcxmet 14413  ballcbl 14415  MetOpencmopn 14418   lim climc 15241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-map 6760  df-pm 6761  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-xneg 9929  df-xadd 9930  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-rest 13188  df-topgen 13207  df-psmet 14420  df-xmet 14421  df-met 14422  df-bl 14423  df-mopn 14424  df-top 14585  df-topon 14598  df-bases 14630  df-limced 15243
This theorem is referenced by:  limcimo  15252
  Copyright terms: Public domain W3C validator