Step | Hyp | Ref
| Expression |
1 | | cnxmet 13171 |
. . . 4
⊢ (abs
∘ − ) ∈ (∞Met‘ℂ) |
2 | | ax-resscn 7845 |
. . . . . . 7
⊢ ℝ
⊆ ℂ |
3 | | sseq1 3165 |
. . . . . . 7
⊢ (𝑆 = ℝ → (𝑆 ⊆ ℂ ↔ ℝ
⊆ ℂ)) |
4 | 2, 3 | mpbiri 167 |
. . . . . 6
⊢ (𝑆 = ℝ → 𝑆 ⊆
ℂ) |
5 | 4 | adantl 275 |
. . . . 5
⊢ ((𝜑 ∧ 𝑆 = ℝ) → 𝑆 ⊆ ℂ) |
6 | | eqimss 3196 |
. . . . . 6
⊢ (𝑆 = ℂ → 𝑆 ⊆
ℂ) |
7 | 6 | adantl 275 |
. . . . 5
⊢ ((𝜑 ∧ 𝑆 = ℂ) → 𝑆 ⊆ ℂ) |
8 | | limcimo.s |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
9 | | elpri 3599 |
. . . . . 6
⊢ (𝑆 ∈ {ℝ, ℂ}
→ (𝑆 = ℝ ∨
𝑆 =
ℂ)) |
10 | 8, 9 | syl 14 |
. . . . 5
⊢ (𝜑 → (𝑆 = ℝ ∨ 𝑆 = ℂ)) |
11 | 5, 7, 10 | mpjaodan 788 |
. . . 4
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
12 | | xmetres2 13019 |
. . . 4
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((abs ∘
− ) ↾ (𝑆
× 𝑆)) ∈
(∞Met‘𝑆)) |
13 | 1, 11, 12 | sylancr 411 |
. . 3
⊢ (𝜑 → ((abs ∘ − )
↾ (𝑆 × 𝑆)) ∈
(∞Met‘𝑆)) |
14 | | limcimo.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ (𝐾 ↾t 𝑆)) |
15 | | eqid 2165 |
. . . . . 6
⊢ ((abs
∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (𝑆 × 𝑆)) |
16 | | limcflfcntop.k |
. . . . . 6
⊢ 𝐾 = (MetOpen‘(abs ∘
− )) |
17 | | eqid 2165 |
. . . . . 6
⊢
(MetOpen‘((abs ∘ − ) ↾ (𝑆 × 𝑆))) = (MetOpen‘((abs ∘ − )
↾ (𝑆 × 𝑆))) |
18 | 15, 16, 17 | metrest 13146 |
. . . . 5
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾 ↾t 𝑆) = (MetOpen‘((abs ∘ − )
↾ (𝑆 × 𝑆)))) |
19 | 1, 11, 18 | sylancr 411 |
. . . 4
⊢ (𝜑 → (𝐾 ↾t 𝑆) = (MetOpen‘((abs ∘ − )
↾ (𝑆 × 𝑆)))) |
20 | 14, 19 | eleqtrd 2245 |
. . 3
⊢ (𝜑 → 𝐶 ∈ (MetOpen‘((abs ∘ −
) ↾ (𝑆 × 𝑆)))) |
21 | | limcimo.bc |
. . 3
⊢ (𝜑 → 𝐵 ∈ 𝐶) |
22 | | limcimo.d |
. . . 4
⊢ (𝜑 → 𝐷 ∈
ℝ+) |
23 | | limcimo.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈
ℝ+) |
24 | | rpmincl 11179 |
. . . 4
⊢ ((𝐷 ∈ ℝ+
∧ 𝐺 ∈
ℝ+) → inf({𝐷, 𝐺}, ℝ, < ) ∈
ℝ+) |
25 | 22, 23, 24 | syl2anc 409 |
. . 3
⊢ (𝜑 → inf({𝐷, 𝐺}, ℝ, < ) ∈
ℝ+) |
26 | 17 | mopni3 13124 |
. . 3
⊢ (((((abs
∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆) ∧ 𝐶 ∈ (MetOpen‘((abs ∘ −
) ↾ (𝑆 × 𝑆))) ∧ 𝐵 ∈ 𝐶) ∧ inf({𝐷, 𝐺}, ℝ, < ) ∈
ℝ+) → ∃𝑟 ∈ ℝ+ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶)) |
27 | 13, 20, 21, 25, 26 | syl31anc 1231 |
. 2
⊢ (𝜑 → ∃𝑟 ∈ ℝ+ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶)) |
28 | | limcimo.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ (𝐹 limℂ 𝐵)) |
29 | | limcrcl 13267 |
. . . . . . . . 9
⊢ (𝑋 ∈ (𝐹 limℂ 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) |
30 | 28, 29 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) |
31 | 30 | simp1d 999 |
. . . . . . 7
⊢ (𝜑 → 𝐹:dom 𝐹⟶ℂ) |
32 | 30 | simp2d 1000 |
. . . . . . 7
⊢ (𝜑 → dom 𝐹 ⊆ ℂ) |
33 | | limcimo.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℂ) |
34 | 31, 32, 33 | ellimc3ap 13270 |
. . . . . 6
⊢ (𝜑 → (𝑋 ∈ (𝐹 limℂ 𝐵) ↔ (𝑋 ∈ ℂ ∧ ∀𝑎 ∈ ℝ+
∃𝑏 ∈
ℝ+ ∀𝑐 ∈ dom 𝐹((𝑐 # 𝐵 ∧ (abs‘(𝑐 − 𝐵)) < 𝑏) → (abs‘((𝐹‘𝑐) − 𝑋)) < 𝑎)))) |
35 | 28, 34 | mpbid 146 |
. . . . 5
⊢ (𝜑 → (𝑋 ∈ ℂ ∧ ∀𝑎 ∈ ℝ+
∃𝑏 ∈
ℝ+ ∀𝑐 ∈ dom 𝐹((𝑐 # 𝐵 ∧ (abs‘(𝑐 − 𝐵)) < 𝑏) → (abs‘((𝐹‘𝑐) − 𝑋)) < 𝑎))) |
36 | 35 | simpld 111 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ ℂ) |
37 | 36 | adantr 274 |
. . 3
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝑋 ∈ ℂ) |
38 | | limcimo.y |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ (𝐹 limℂ 𝐵)) |
39 | 31, 32, 33 | ellimc3ap 13270 |
. . . . . 6
⊢ (𝜑 → (𝑌 ∈ (𝐹 limℂ 𝐵) ↔ (𝑌 ∈ ℂ ∧ ∀𝑎 ∈ ℝ+
∃𝑏 ∈
ℝ+ ∀𝑐 ∈ dom 𝐹((𝑐 # 𝐵 ∧ (abs‘(𝑐 − 𝐵)) < 𝑏) → (abs‘((𝐹‘𝑐) − 𝑌)) < 𝑎)))) |
40 | 38, 39 | mpbid 146 |
. . . . 5
⊢ (𝜑 → (𝑌 ∈ ℂ ∧ ∀𝑎 ∈ ℝ+
∃𝑏 ∈
ℝ+ ∀𝑐 ∈ dom 𝐹((𝑐 # 𝐵 ∧ (abs‘(𝑐 − 𝐵)) < 𝑏) → (abs‘((𝐹‘𝑐) − 𝑌)) < 𝑎))) |
41 | 40 | simpld 111 |
. . . 4
⊢ (𝜑 → 𝑌 ∈ ℂ) |
42 | 41 | adantr 274 |
. . 3
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝑌 ∈ ℂ) |
43 | | limcflf.f |
. . . . 5
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
44 | 43 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝐹:𝐴⟶ℂ) |
45 | | breq1 3985 |
. . . . . 6
⊢ (𝑞 = (𝐵 + (𝑟 / 2)) → (𝑞 # 𝐵 ↔ (𝐵 + (𝑟 / 2)) # 𝐵)) |
46 | | simprrr 530 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶) |
47 | | limcimo.bs |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ 𝑆) |
48 | 47 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝐵 ∈ 𝑆) |
49 | 47 | ad2antrr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℝ) → 𝐵 ∈ 𝑆) |
50 | | simpr 109 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℝ) → 𝑆 = ℝ) |
51 | 49, 50 | eleqtrd 2245 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℝ) → 𝐵 ∈ ℝ) |
52 | | simprl 521 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝑟 ∈ ℝ+) |
53 | 52 | rphalfcld 9645 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝑟 / 2) ∈
ℝ+) |
54 | 53 | adantr 274 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℝ) → (𝑟 / 2) ∈
ℝ+) |
55 | 54 | rpred 9632 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℝ) → (𝑟 / 2) ∈ ℝ) |
56 | 51, 55 | readdcld 7928 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℝ) → (𝐵 + (𝑟 / 2)) ∈ ℝ) |
57 | 56, 50 | eleqtrrd 2246 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℝ) → (𝐵 + (𝑟 / 2)) ∈ 𝑆) |
58 | 33 | ad2antrr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℂ) → 𝐵 ∈ ℂ) |
59 | 53 | adantr 274 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℂ) → (𝑟 / 2) ∈
ℝ+) |
60 | 59 | rpcnd 9634 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℂ) → (𝑟 / 2) ∈ ℂ) |
61 | 58, 60 | addcld 7918 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℂ) → (𝐵 + (𝑟 / 2)) ∈ ℂ) |
62 | | simpr 109 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℂ) → 𝑆 = ℂ) |
63 | 61, 62 | eleqtrrd 2246 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) ∧ 𝑆 = ℂ) → (𝐵 + (𝑟 / 2)) ∈ 𝑆) |
64 | 10 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝑆 = ℝ ∨ 𝑆 = ℂ)) |
65 | 57, 63, 64 | mpjaodan 788 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵 + (𝑟 / 2)) ∈ 𝑆) |
66 | 48, 65 | ovresd 5982 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵((abs ∘ − ) ↾ (𝑆 × 𝑆))(𝐵 + (𝑟 / 2))) = (𝐵(abs ∘ − )(𝐵 + (𝑟 / 2)))) |
67 | 33 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝐵 ∈ ℂ) |
68 | 53 | rpcnd 9634 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝑟 / 2) ∈ ℂ) |
69 | 67, 68 | addcld 7918 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵 + (𝑟 / 2)) ∈ ℂ) |
70 | | eqid 2165 |
. . . . . . . . . . . 12
⊢ (abs
∘ − ) = (abs ∘ − ) |
71 | 70 | cnmetdval 13169 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ℂ ∧ (𝐵 + (𝑟 / 2)) ∈ ℂ) → (𝐵(abs ∘ − )(𝐵 + (𝑟 / 2))) = (abs‘(𝐵 − (𝐵 + (𝑟 / 2))))) |
72 | 67, 69, 71 | syl2anc 409 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵(abs ∘ − )(𝐵 + (𝑟 / 2))) = (abs‘(𝐵 − (𝐵 + (𝑟 / 2))))) |
73 | 67, 67, 68 | subsub4d 8240 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((𝐵 − 𝐵) − (𝑟 / 2)) = (𝐵 − (𝐵 + (𝑟 / 2)))) |
74 | 67 | subidd 8197 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵 − 𝐵) = 0) |
75 | 74 | oveq1d 5857 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((𝐵 − 𝐵) − (𝑟 / 2)) = (0 − (𝑟 / 2))) |
76 | 73, 75 | eqtr3d 2200 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵 − (𝐵 + (𝑟 / 2))) = (0 − (𝑟 / 2))) |
77 | 76 | fveq2d 5490 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘(𝐵 − (𝐵 + (𝑟 / 2)))) = (abs‘(0 − (𝑟 / 2)))) |
78 | | 0cnd 7892 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 0 ∈
ℂ) |
79 | 78, 68 | abssubd 11135 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘(0 − (𝑟 / 2))) = (abs‘((𝑟 / 2) −
0))) |
80 | 77, 79 | eqtrd 2198 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘(𝐵 − (𝐵 + (𝑟 / 2)))) = (abs‘((𝑟 / 2) − 0))) |
81 | 68 | subid1d 8198 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((𝑟 / 2) − 0) = (𝑟 / 2)) |
82 | 81 | fveq2d 5490 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘((𝑟 / 2) − 0)) = (abs‘(𝑟 / 2))) |
83 | 53 | rpred 9632 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝑟 / 2) ∈ ℝ) |
84 | 53 | rpge0d 9636 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 0 ≤ (𝑟 / 2)) |
85 | 83, 84 | absidd 11109 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘(𝑟 / 2)) = (𝑟 / 2)) |
86 | 80, 82, 85 | 3eqtrd 2202 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘(𝐵 − (𝐵 + (𝑟 / 2)))) = (𝑟 / 2)) |
87 | 66, 72, 86 | 3eqtrd 2202 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵((abs ∘ − ) ↾ (𝑆 × 𝑆))(𝐵 + (𝑟 / 2))) = (𝑟 / 2)) |
88 | | rphalflt 9619 |
. . . . . . . . . 10
⊢ (𝑟 ∈ ℝ+
→ (𝑟 / 2) < 𝑟) |
89 | 88 | ad2antrl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝑟 / 2) < 𝑟) |
90 | 87, 89 | eqbrtrd 4004 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵((abs ∘ − ) ↾ (𝑆 × 𝑆))(𝐵 + (𝑟 / 2))) < 𝑟) |
91 | 13 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((abs ∘ − ) ↾
(𝑆 × 𝑆)) ∈
(∞Met‘𝑆)) |
92 | | rpxr 9597 |
. . . . . . . . . 10
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ*) |
93 | 92 | ad2antrl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝑟 ∈ ℝ*) |
94 | | elbl2 13033 |
. . . . . . . . 9
⊢ (((((abs
∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆) ∧ 𝑟 ∈ ℝ*) ∧ (𝐵 ∈ 𝑆 ∧ (𝐵 + (𝑟 / 2)) ∈ 𝑆)) → ((𝐵 + (𝑟 / 2)) ∈ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ↔ (𝐵((abs ∘ − ) ↾ (𝑆 × 𝑆))(𝐵 + (𝑟 / 2))) < 𝑟)) |
95 | 91, 93, 48, 65, 94 | syl22anc 1229 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((𝐵 + (𝑟 / 2)) ∈ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ↔ (𝐵((abs ∘ − ) ↾ (𝑆 × 𝑆))(𝐵 + (𝑟 / 2))) < 𝑟)) |
96 | 90, 95 | mpbird 166 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵 + (𝑟 / 2)) ∈ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟)) |
97 | 46, 96 | sseldd 3143 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵 + (𝑟 / 2)) ∈ 𝐶) |
98 | 53 | rpap0d 9638 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝑟 / 2) # 0) |
99 | 67, 67 | negsubdid 8224 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → -(𝐵 − 𝐵) = (-𝐵 + 𝐵)) |
100 | 74 | negeqd 8093 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → -(𝐵 − 𝐵) = -0) |
101 | | neg0 8144 |
. . . . . . . . . . . 12
⊢ -0 =
0 |
102 | 100, 101 | eqtrdi 2215 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → -(𝐵 − 𝐵) = 0) |
103 | 99, 102 | eqtr3d 2200 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (-𝐵 + 𝐵) = 0) |
104 | 103 | oveq1d 5857 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((-𝐵 + 𝐵) + (𝑟 / 2)) = (0 + (𝑟 / 2))) |
105 | 67 | negcld 8196 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → -𝐵 ∈ ℂ) |
106 | 105, 67, 68 | addassd 7921 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((-𝐵 + 𝐵) + (𝑟 / 2)) = (-𝐵 + (𝐵 + (𝑟 / 2)))) |
107 | 68 | addid2d 8048 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (0 + (𝑟 / 2)) = (𝑟 / 2)) |
108 | 104, 106,
107 | 3eqtr3d 2206 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (-𝐵 + (𝐵 + (𝑟 / 2))) = (𝑟 / 2)) |
109 | 98, 108, 103 | 3brtr4d 4014 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (-𝐵 + (𝐵 + (𝑟 / 2))) # (-𝐵 + 𝐵)) |
110 | | apadd2 8507 |
. . . . . . . 8
⊢ (((𝐵 + (𝑟 / 2)) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ -𝐵 ∈ ℂ) → ((𝐵 + (𝑟 / 2)) # 𝐵 ↔ (-𝐵 + (𝐵 + (𝑟 / 2))) # (-𝐵 + 𝐵))) |
111 | 69, 67, 105, 110 | syl3anc 1228 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((𝐵 + (𝑟 / 2)) # 𝐵 ↔ (-𝐵 + (𝐵 + (𝑟 / 2))) # (-𝐵 + 𝐵))) |
112 | 109, 111 | mpbird 166 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵 + (𝑟 / 2)) # 𝐵) |
113 | 45, 97, 112 | elrabd 2884 |
. . . . 5
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵 + (𝑟 / 2)) ∈ {𝑞 ∈ 𝐶 ∣ 𝑞 # 𝐵}) |
114 | | limcimo.ca |
. . . . . . 7
⊢ (𝜑 → {𝑞 ∈ 𝐶 ∣ 𝑞 # 𝐵} ⊆ 𝐴) |
115 | 114 | sseld 3141 |
. . . . . 6
⊢ (𝜑 → ((𝐵 + (𝑟 / 2)) ∈ {𝑞 ∈ 𝐶 ∣ 𝑞 # 𝐵} → (𝐵 + (𝑟 / 2)) ∈ 𝐴)) |
116 | 115 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((𝐵 + (𝑟 / 2)) ∈ {𝑞 ∈ 𝐶 ∣ 𝑞 # 𝐵} → (𝐵 + (𝑟 / 2)) ∈ 𝐴)) |
117 | 113, 116 | mpd 13 |
. . . 4
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐵 + (𝑟 / 2)) ∈ 𝐴) |
118 | 44, 117 | ffvelrnd 5621 |
. . 3
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝐹‘(𝐵 + (𝑟 / 2))) ∈ ℂ) |
119 | 37, 42 | subcld 8209 |
. . . 4
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (𝑋 − 𝑌) ∈ ℂ) |
120 | 119 | abscld 11123 |
. . 3
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘(𝑋 − 𝑌)) ∈ ℝ) |
121 | 37, 118 | abssubd 11135 |
. . . 4
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘(𝑋 − (𝐹‘(𝐵 + (𝑟 / 2))))) = (abs‘((𝐹‘(𝐵 + (𝑟 / 2))) − 𝑋))) |
122 | 69, 67 | subcld 8209 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((𝐵 + (𝑟 / 2)) − 𝐵) ∈ ℂ) |
123 | 122 | abscld 11123 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) ∈ ℝ) |
124 | 52 | rpred 9632 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝑟 ∈ ℝ) |
125 | 22 | rpred 9632 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ ℝ) |
126 | 125 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝐷 ∈ ℝ) |
127 | 67, 68 | pncan2d 8211 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ((𝐵 + (𝑟 / 2)) − 𝐵) = (𝑟 / 2)) |
128 | 127 | fveq2d 5490 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) = (abs‘(𝑟 / 2))) |
129 | 128, 85 | eqtrd 2198 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) = (𝑟 / 2)) |
130 | 129, 89 | eqbrtrd 4004 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝑟) |
131 | 23 | rpred 9632 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ ℝ) |
132 | 131 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝐺 ∈ ℝ) |
133 | | mincl 11172 |
. . . . . . . 8
⊢ ((𝐷 ∈ ℝ ∧ 𝐺 ∈ ℝ) →
inf({𝐷, 𝐺}, ℝ, < ) ∈
ℝ) |
134 | 126, 132,
133 | syl2anc 409 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → inf({𝐷, 𝐺}, ℝ, < ) ∈
ℝ) |
135 | | simprrl 529 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝑟 < inf({𝐷, 𝐺}, ℝ, < )) |
136 | | min1inf 11173 |
. . . . . . . 8
⊢ ((𝐷 ∈ ℝ ∧ 𝐺 ∈ ℝ) →
inf({𝐷, 𝐺}, ℝ, < ) ≤ 𝐷) |
137 | 126, 132,
136 | syl2anc 409 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → inf({𝐷, 𝐺}, ℝ, < ) ≤ 𝐷) |
138 | 124, 134,
126, 135, 137 | ltletrd 8321 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝑟 < 𝐷) |
139 | 123, 124,
126, 130, 138 | lttrd 8024 |
. . . . 5
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐷) |
140 | | breq1 3985 |
. . . . . . . 8
⊢ (𝑧 = (𝐵 + (𝑟 / 2)) → (𝑧 # 𝐵 ↔ (𝐵 + (𝑟 / 2)) # 𝐵)) |
141 | | fvoveq1 5865 |
. . . . . . . . 9
⊢ (𝑧 = (𝐵 + (𝑟 / 2)) → (abs‘(𝑧 − 𝐵)) = (abs‘((𝐵 + (𝑟 / 2)) − 𝐵))) |
142 | 141 | breq1d 3992 |
. . . . . . . 8
⊢ (𝑧 = (𝐵 + (𝑟 / 2)) → ((abs‘(𝑧 − 𝐵)) < 𝐷 ↔ (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐷)) |
143 | 140, 142 | anbi12d 465 |
. . . . . . 7
⊢ (𝑧 = (𝐵 + (𝑟 / 2)) → ((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝐷) ↔ ((𝐵 + (𝑟 / 2)) # 𝐵 ∧ (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐷))) |
144 | 143 | imbrov2fvoveq 5867 |
. . . . . 6
⊢ (𝑧 = (𝐵 + (𝑟 / 2)) → (((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝐷) → (abs‘((𝐹‘𝑧) − 𝑋)) < ((abs‘(𝑋 − 𝑌)) / 2)) ↔ (((𝐵 + (𝑟 / 2)) # 𝐵 ∧ (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐷) → (abs‘((𝐹‘(𝐵 + (𝑟 / 2))) − 𝑋)) < ((abs‘(𝑋 − 𝑌)) / 2)))) |
145 | | limcimo.z |
. . . . . . 7
⊢ (𝜑 → ∀𝑧 ∈ 𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝐷) → (abs‘((𝐹‘𝑧) − 𝑋)) < ((abs‘(𝑋 − 𝑌)) / 2))) |
146 | 145 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ∀𝑧 ∈ 𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝐷) → (abs‘((𝐹‘𝑧) − 𝑋)) < ((abs‘(𝑋 − 𝑌)) / 2))) |
147 | 144, 146,
117 | rspcdva 2835 |
. . . . 5
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (((𝐵 + (𝑟 / 2)) # 𝐵 ∧ (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐷) → (abs‘((𝐹‘(𝐵 + (𝑟 / 2))) − 𝑋)) < ((abs‘(𝑋 − 𝑌)) / 2))) |
148 | 112, 139,
147 | mp2and 430 |
. . . 4
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘((𝐹‘(𝐵 + (𝑟 / 2))) − 𝑋)) < ((abs‘(𝑋 − 𝑌)) / 2)) |
149 | 121, 148 | eqbrtrd 4004 |
. . 3
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘(𝑋 − (𝐹‘(𝐵 + (𝑟 / 2))))) < ((abs‘(𝑋 − 𝑌)) / 2)) |
150 | | min2inf 11174 |
. . . . . . 7
⊢ ((𝐷 ∈ ℝ ∧ 𝐺 ∈ ℝ) →
inf({𝐷, 𝐺}, ℝ, < ) ≤ 𝐺) |
151 | 126, 132,
150 | syl2anc 409 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → inf({𝐷, 𝐺}, ℝ, < ) ≤ 𝐺) |
152 | 124, 134,
132, 135, 151 | ltletrd 8321 |
. . . . 5
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → 𝑟 < 𝐺) |
153 | 123, 124,
132, 130, 152 | lttrd 8024 |
. . . 4
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐺) |
154 | | breq1 3985 |
. . . . . . 7
⊢ (𝑤 = (𝐵 + (𝑟 / 2)) → (𝑤 # 𝐵 ↔ (𝐵 + (𝑟 / 2)) # 𝐵)) |
155 | | fvoveq1 5865 |
. . . . . . . 8
⊢ (𝑤 = (𝐵 + (𝑟 / 2)) → (abs‘(𝑤 − 𝐵)) = (abs‘((𝐵 + (𝑟 / 2)) − 𝐵))) |
156 | 155 | breq1d 3992 |
. . . . . . 7
⊢ (𝑤 = (𝐵 + (𝑟 / 2)) → ((abs‘(𝑤 − 𝐵)) < 𝐺 ↔ (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐺)) |
157 | 154, 156 | anbi12d 465 |
. . . . . 6
⊢ (𝑤 = (𝐵 + (𝑟 / 2)) → ((𝑤 # 𝐵 ∧ (abs‘(𝑤 − 𝐵)) < 𝐺) ↔ ((𝐵 + (𝑟 / 2)) # 𝐵 ∧ (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐺))) |
158 | 157 | imbrov2fvoveq 5867 |
. . . . 5
⊢ (𝑤 = (𝐵 + (𝑟 / 2)) → (((𝑤 # 𝐵 ∧ (abs‘(𝑤 − 𝐵)) < 𝐺) → (abs‘((𝐹‘𝑤) − 𝑌)) < ((abs‘(𝑋 − 𝑌)) / 2)) ↔ (((𝐵 + (𝑟 / 2)) # 𝐵 ∧ (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐺) → (abs‘((𝐹‘(𝐵 + (𝑟 / 2))) − 𝑌)) < ((abs‘(𝑋 − 𝑌)) / 2)))) |
159 | | limcimo.w |
. . . . . 6
⊢ (𝜑 → ∀𝑤 ∈ 𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤 − 𝐵)) < 𝐺) → (abs‘((𝐹‘𝑤) − 𝑌)) < ((abs‘(𝑋 − 𝑌)) / 2))) |
160 | 159 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → ∀𝑤 ∈ 𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤 − 𝐵)) < 𝐺) → (abs‘((𝐹‘𝑤) − 𝑌)) < ((abs‘(𝑋 − 𝑌)) / 2))) |
161 | 158, 160,
117 | rspcdva 2835 |
. . . 4
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (((𝐵 + (𝑟 / 2)) # 𝐵 ∧ (abs‘((𝐵 + (𝑟 / 2)) − 𝐵)) < 𝐺) → (abs‘((𝐹‘(𝐵 + (𝑟 / 2))) − 𝑌)) < ((abs‘(𝑋 − 𝑌)) / 2))) |
162 | 112, 153,
161 | mp2and 430 |
. . 3
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘((𝐹‘(𝐵 + (𝑟 / 2))) − 𝑌)) < ((abs‘(𝑋 − 𝑌)) / 2)) |
163 | 37, 42, 118, 120, 149, 162 | abs3lemd 11143 |
. 2
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝑟 < inf({𝐷, 𝐺}, ℝ, < ) ∧ (𝐵(ball‘((abs ∘ − ) ↾
(𝑆 × 𝑆)))𝑟) ⊆ 𝐶))) → (abs‘(𝑋 − 𝑌)) < (abs‘(𝑋 − 𝑌))) |
164 | 27, 163 | rexlimddv 2588 |
1
⊢ (𝜑 → (abs‘(𝑋 − 𝑌)) < (abs‘(𝑋 − 𝑌))) |