![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tgioo2cntop | GIF version |
Description: The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by Jim Kingdon, 6-Aug-2023.) |
Ref | Expression |
---|---|
tgioo2cntop.1 | ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) |
Ref | Expression |
---|---|
tgioo2cntop | ⊢ (topGen‘ran (,)) = (𝐽 ↾t ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2189 | . 2 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
2 | cnxmet 14434 | . . 3 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
3 | ax-resscn 7922 | . . 3 ⊢ ℝ ⊆ ℂ | |
4 | tgioo2cntop.1 | . . . 4 ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) | |
5 | eqid 2189 | . . . 4 ⊢ (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) | |
6 | 1, 4, 5 | metrest 14409 | . . 3 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ ℝ ⊆ ℂ) → (𝐽 ↾t ℝ) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))) |
7 | 2, 3, 6 | mp2an 426 | . 2 ⊢ (𝐽 ↾t ℝ) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) |
8 | 1, 7 | tgioo 14449 | 1 ⊢ (topGen‘ran (,)) = (𝐽 ↾t ℝ) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2160 ⊆ wss 3144 × cxp 4639 ran crn 4642 ↾ cres 4643 ∘ ccom 4645 ‘cfv 5231 (class class class)co 5891 ℂcc 7828 ℝcr 7829 − cmin 8147 (,)cioo 9907 abscabs 11025 ↾t crest 12716 topGenctg 12731 ∞Metcxmet 13816 MetOpencmopn 13821 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-iinf 4602 ax-cnex 7921 ax-resscn 7922 ax-1cn 7923 ax-1re 7924 ax-icn 7925 ax-addcl 7926 ax-addrcl 7927 ax-mulcl 7928 ax-mulrcl 7929 ax-addcom 7930 ax-mulcom 7931 ax-addass 7932 ax-mulass 7933 ax-distr 7934 ax-i2m1 7935 ax-0lt1 7936 ax-1rid 7937 ax-0id 7938 ax-rnegex 7939 ax-precex 7940 ax-cnre 7941 ax-pre-ltirr 7942 ax-pre-ltwlin 7943 ax-pre-lttrn 7944 ax-pre-apti 7945 ax-pre-ltadd 7946 ax-pre-mulgt0 7947 ax-pre-mulext 7948 ax-arch 7949 ax-caucvg 7950 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4308 df-po 4311 df-iso 4312 df-iord 4381 df-on 4383 df-ilim 4384 df-suc 4386 df-iom 4605 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5233 df-fn 5234 df-f 5235 df-f1 5236 df-fo 5237 df-f1o 5238 df-fv 5239 df-isom 5240 df-riota 5847 df-ov 5894 df-oprab 5895 df-mpo 5896 df-1st 6159 df-2nd 6160 df-recs 6324 df-frec 6410 df-map 6668 df-sup 7002 df-inf 7003 df-pnf 8013 df-mnf 8014 df-xr 8015 df-ltxr 8016 df-le 8017 df-sub 8149 df-neg 8150 df-reap 8551 df-ap 8558 df-div 8649 df-inn 8939 df-2 8997 df-3 8998 df-4 8999 df-n0 9196 df-z 9273 df-uz 9548 df-q 9639 df-rp 9673 df-xneg 9791 df-xadd 9792 df-ioo 9911 df-seqfrec 10465 df-exp 10539 df-cj 10870 df-re 10871 df-im 10872 df-rsqrt 11026 df-abs 11027 df-rest 12718 df-topgen 12737 df-psmet 13823 df-xmet 13824 df-met 13825 df-bl 13826 df-mopn 13827 df-top 13901 df-topon 13914 df-bases 13946 |
This theorem is referenced by: rerestcntop 14453 cnrehmeocntop 14496 dvcjbr 14575 |
Copyright terms: Public domain | W3C validator |