Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imcn2 | GIF version |
Description: The imaginary part function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.) |
Ref | Expression |
---|---|
imcn2 | ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((ℑ‘𝑧) − (ℑ‘𝐴))) < 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imf 10756 | . . 3 ⊢ ℑ:ℂ⟶ℝ | |
2 | ax-resscn 7824 | . . 3 ⊢ ℝ ⊆ ℂ | |
3 | fss 5331 | . . 3 ⊢ ((ℑ:ℂ⟶ℝ ∧ ℝ ⊆ ℂ) → ℑ:ℂ⟶ℂ) | |
4 | 1, 2, 3 | mp2an 423 | . 2 ⊢ ℑ:ℂ⟶ℂ |
5 | imsub 10778 | . . . 4 ⊢ ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (ℑ‘(𝑧 − 𝐴)) = ((ℑ‘𝑧) − (ℑ‘𝐴))) | |
6 | 5 | fveq2d 5472 | . . 3 ⊢ ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘(ℑ‘(𝑧 − 𝐴))) = (abs‘((ℑ‘𝑧) − (ℑ‘𝐴)))) |
7 | subcl 8074 | . . . 4 ⊢ ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑧 − 𝐴) ∈ ℂ) | |
8 | absimle 10984 | . . . 4 ⊢ ((𝑧 − 𝐴) ∈ ℂ → (abs‘(ℑ‘(𝑧 − 𝐴))) ≤ (abs‘(𝑧 − 𝐴))) | |
9 | 7, 8 | syl 14 | . . 3 ⊢ ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘(ℑ‘(𝑧 − 𝐴))) ≤ (abs‘(𝑧 − 𝐴))) |
10 | 6, 9 | eqbrtrrd 3988 | . 2 ⊢ ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘((ℑ‘𝑧) − (ℑ‘𝐴))) ≤ (abs‘(𝑧 − 𝐴))) |
11 | 4, 10 | cn1lem 11211 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((ℑ‘𝑧) − (ℑ‘𝐴))) < 𝑥)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2128 ∀wral 2435 ∃wrex 2436 ⊆ wss 3102 class class class wbr 3965 ⟶wf 5166 ‘cfv 5170 (class class class)co 5824 ℂcc 7730 ℝcr 7731 < clt 7912 ≤ cle 7913 − cmin 8046 ℝ+crp 9560 ℑcim 10741 abscabs 10897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4496 ax-iinf 4547 ax-cnex 7823 ax-resscn 7824 ax-1cn 7825 ax-1re 7826 ax-icn 7827 ax-addcl 7828 ax-addrcl 7829 ax-mulcl 7830 ax-mulrcl 7831 ax-addcom 7832 ax-mulcom 7833 ax-addass 7834 ax-mulass 7835 ax-distr 7836 ax-i2m1 7837 ax-0lt1 7838 ax-1rid 7839 ax-0id 7840 ax-rnegex 7841 ax-precex 7842 ax-cnre 7843 ax-pre-ltirr 7844 ax-pre-ltwlin 7845 ax-pre-lttrn 7846 ax-pre-apti 7847 ax-pre-ltadd 7848 ax-pre-mulgt0 7849 ax-pre-mulext 7850 ax-arch 7851 ax-caucvg 7852 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4253 df-po 4256 df-iso 4257 df-iord 4326 df-on 4328 df-ilim 4329 df-suc 4331 df-iom 4550 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-rn 4597 df-res 4598 df-ima 4599 df-iota 5135 df-fun 5172 df-fn 5173 df-f 5174 df-f1 5175 df-fo 5176 df-f1o 5177 df-fv 5178 df-riota 5780 df-ov 5827 df-oprab 5828 df-mpo 5829 df-1st 6088 df-2nd 6089 df-recs 6252 df-frec 6338 df-pnf 7914 df-mnf 7915 df-xr 7916 df-ltxr 7917 df-le 7918 df-sub 8048 df-neg 8049 df-reap 8450 df-ap 8457 df-div 8546 df-inn 8834 df-2 8892 df-3 8893 df-4 8894 df-n0 9091 df-z 9168 df-uz 9440 df-rp 9561 df-seqfrec 10345 df-exp 10419 df-cj 10742 df-re 10743 df-im 10744 df-rsqrt 10898 df-abs 10899 |
This theorem is referenced by: climim 11220 imcncf 12974 |
Copyright terms: Public domain | W3C validator |