Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cosz12 | GIF version |
Description: Cosine has a zero between 1 and 2. (Contributed by Mario Carneiro and Jim Kingdon, 7-Mar-2024.) |
Ref | Expression |
---|---|
cosz12 | ⊢ ∃𝑝 ∈ (1(,)2)(cos‘𝑝) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1red 7914 | . . 3 ⊢ (⊤ → 1 ∈ ℝ) | |
2 | 2re 8927 | . . . 4 ⊢ 2 ∈ ℝ | |
3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → 2 ∈ ℝ) |
4 | 0red 7900 | . . 3 ⊢ (⊤ → 0 ∈ ℝ) | |
5 | 1lt2 9026 | . . . 4 ⊢ 1 < 2 | |
6 | 5 | a1i 9 | . . 3 ⊢ (⊤ → 1 < 2) |
7 | 1re 7898 | . . . . . 6 ⊢ 1 ∈ ℝ | |
8 | iccssre 9891 | . . . . . 6 ⊢ ((1 ∈ ℝ ∧ 2 ∈ ℝ) → (1[,]2) ⊆ ℝ) | |
9 | 7, 2, 8 | mp2an 423 | . . . . 5 ⊢ (1[,]2) ⊆ ℝ |
10 | ax-resscn 7845 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
11 | 9, 10 | sstri 3151 | . . . 4 ⊢ (1[,]2) ⊆ ℂ |
12 | 11 | a1i 9 | . . 3 ⊢ (⊤ → (1[,]2) ⊆ ℂ) |
13 | coscn 13331 | . . . 4 ⊢ cos ∈ (ℂ–cn→ℂ) | |
14 | 13 | a1i 9 | . . 3 ⊢ (⊤ → cos ∈ (ℂ–cn→ℂ)) |
15 | 9 | sseli 3138 | . . . . 5 ⊢ (𝑥 ∈ (1[,]2) → 𝑥 ∈ ℝ) |
16 | 15 | recoscld 11665 | . . . 4 ⊢ (𝑥 ∈ (1[,]2) → (cos‘𝑥) ∈ ℝ) |
17 | 16 | adantl 275 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ (1[,]2)) → (cos‘𝑥) ∈ ℝ) |
18 | sincos2sgn 11706 | . . . . . 6 ⊢ (0 < (sin‘2) ∧ (cos‘2) < 0) | |
19 | 18 | simpri 112 | . . . . 5 ⊢ (cos‘2) < 0 |
20 | sincos1sgn 11705 | . . . . . 6 ⊢ (0 < (sin‘1) ∧ 0 < (cos‘1)) | |
21 | 20 | simpri 112 | . . . . 5 ⊢ 0 < (cos‘1) |
22 | 19, 21 | pm3.2i 270 | . . . 4 ⊢ ((cos‘2) < 0 ∧ 0 < (cos‘1)) |
23 | 22 | a1i 9 | . . 3 ⊢ (⊤ → ((cos‘2) < 0 ∧ 0 < (cos‘1))) |
24 | cos12dec 11708 | . . . . 5 ⊢ ((𝑥 ∈ (1[,]2) ∧ 𝑦 ∈ (1[,]2) ∧ 𝑥 < 𝑦) → (cos‘𝑦) < (cos‘𝑥)) | |
25 | 24 | 3expb 1194 | . . . 4 ⊢ ((𝑥 ∈ (1[,]2) ∧ (𝑦 ∈ (1[,]2) ∧ 𝑥 < 𝑦)) → (cos‘𝑦) < (cos‘𝑥)) |
26 | 25 | adantll 468 | . . 3 ⊢ (((⊤ ∧ 𝑥 ∈ (1[,]2)) ∧ (𝑦 ∈ (1[,]2) ∧ 𝑥 < 𝑦)) → (cos‘𝑦) < (cos‘𝑥)) |
27 | 1, 3, 4, 6, 12, 14, 17, 23, 26 | ivthdec 13262 | . 2 ⊢ (⊤ → ∃𝑝 ∈ (1(,)2)(cos‘𝑝) = 0) |
28 | 27 | mptru 1352 | 1 ⊢ ∃𝑝 ∈ (1(,)2)(cos‘𝑝) = 0 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1343 ⊤wtru 1344 ∈ wcel 2136 ∃wrex 2445 ⊆ wss 3116 class class class wbr 3982 ‘cfv 5188 (class class class)co 5842 ℂcc 7751 ℝcr 7752 0cc0 7753 1c1 7754 < clt 7933 2c2 8908 (,)cioo 9824 [,]cicc 9827 sincsin 11585 cosccos 11586 –cn→ccncf 13197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 ax-pre-suploc 7874 ax-addf 7875 ax-mulf 7876 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-disj 3960 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-of 6050 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-frec 6359 df-1o 6384 df-oadd 6388 df-er 6501 df-map 6616 df-pm 6617 df-en 6707 df-dom 6708 df-fin 6709 df-sup 6949 df-inf 6950 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-5 8919 df-6 8920 df-7 8921 df-8 8922 df-9 8923 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-xneg 9708 df-xadd 9709 df-ioo 9828 df-ioc 9829 df-ico 9830 df-icc 9831 df-fz 9945 df-fzo 10078 df-seqfrec 10381 df-exp 10455 df-fac 10639 df-bc 10661 df-ihash 10689 df-shft 10757 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-clim 11220 df-sumdc 11295 df-ef 11589 df-sin 11591 df-cos 11592 df-rest 12558 df-topgen 12577 df-psmet 12627 df-xmet 12628 df-met 12629 df-bl 12630 df-mopn 12631 df-top 12636 df-topon 12649 df-bases 12681 df-ntr 12736 df-cn 12828 df-cnp 12829 df-tx 12893 df-cncf 13198 df-limced 13265 df-dvap 13266 |
This theorem is referenced by: sin0pilem1 13342 |
Copyright terms: Public domain | W3C validator |