![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cosz12 | GIF version |
Description: Cosine has a zero between 1 and 2. (Contributed by Mario Carneiro and Jim Kingdon, 7-Mar-2024.) |
Ref | Expression |
---|---|
cosz12 | β’ βπ β (1(,)2)(cosβπ) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1red 7974 | . . 3 β’ (β€ β 1 β β) | |
2 | 2re 8991 | . . . 4 β’ 2 β β | |
3 | 2 | a1i 9 | . . 3 β’ (β€ β 2 β β) |
4 | 0red 7960 | . . 3 β’ (β€ β 0 β β) | |
5 | 1lt2 9090 | . . . 4 β’ 1 < 2 | |
6 | 5 | a1i 9 | . . 3 β’ (β€ β 1 < 2) |
7 | 1re 7958 | . . . . . 6 β’ 1 β β | |
8 | iccssre 9957 | . . . . . 6 β’ ((1 β β β§ 2 β β) β (1[,]2) β β) | |
9 | 7, 2, 8 | mp2an 426 | . . . . 5 β’ (1[,]2) β β |
10 | ax-resscn 7905 | . . . . 5 β’ β β β | |
11 | 9, 10 | sstri 3166 | . . . 4 β’ (1[,]2) β β |
12 | 11 | a1i 9 | . . 3 β’ (β€ β (1[,]2) β β) |
13 | coscn 14276 | . . . 4 β’ cos β (ββcnββ) | |
14 | 13 | a1i 9 | . . 3 β’ (β€ β cos β (ββcnββ)) |
15 | 9 | sseli 3153 | . . . . 5 β’ (π₯ β (1[,]2) β π₯ β β) |
16 | 15 | recoscld 11734 | . . . 4 β’ (π₯ β (1[,]2) β (cosβπ₯) β β) |
17 | 16 | adantl 277 | . . 3 β’ ((β€ β§ π₯ β (1[,]2)) β (cosβπ₯) β β) |
18 | sincos2sgn 11775 | . . . . . 6 β’ (0 < (sinβ2) β§ (cosβ2) < 0) | |
19 | 18 | simpri 113 | . . . . 5 β’ (cosβ2) < 0 |
20 | sincos1sgn 11774 | . . . . . 6 β’ (0 < (sinβ1) β§ 0 < (cosβ1)) | |
21 | 20 | simpri 113 | . . . . 5 β’ 0 < (cosβ1) |
22 | 19, 21 | pm3.2i 272 | . . . 4 β’ ((cosβ2) < 0 β§ 0 < (cosβ1)) |
23 | 22 | a1i 9 | . . 3 β’ (β€ β ((cosβ2) < 0 β§ 0 < (cosβ1))) |
24 | cos12dec 11777 | . . . . 5 β’ ((π₯ β (1[,]2) β§ π¦ β (1[,]2) β§ π₯ < π¦) β (cosβπ¦) < (cosβπ₯)) | |
25 | 24 | 3expb 1204 | . . . 4 β’ ((π₯ β (1[,]2) β§ (π¦ β (1[,]2) β§ π₯ < π¦)) β (cosβπ¦) < (cosβπ₯)) |
26 | 25 | adantll 476 | . . 3 β’ (((β€ β§ π₯ β (1[,]2)) β§ (π¦ β (1[,]2) β§ π₯ < π¦)) β (cosβπ¦) < (cosβπ₯)) |
27 | 1, 3, 4, 6, 12, 14, 17, 23, 26 | ivthdec 14207 | . 2 β’ (β€ β βπ β (1(,)2)(cosβπ) = 0) |
28 | 27 | mptru 1362 | 1 β’ βπ β (1(,)2)(cosβπ) = 0 |
Colors of variables: wff set class |
Syntax hints: β§ wa 104 = wceq 1353 β€wtru 1354 β wcel 2148 βwrex 2456 β wss 3131 class class class wbr 4005 βcfv 5218 (class class class)co 5877 βcc 7811 βcr 7812 0cc0 7813 1c1 7814 < clt 7994 2c2 8972 (,)cioo 9890 [,]cicc 9893 sincsin 11654 cosccos 11655 βcnβccncf 14142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-precex 7923 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 ax-pre-mulext 7931 ax-arch 7932 ax-caucvg 7933 ax-pre-suploc 7934 ax-addf 7935 ax-mulf 7936 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-disj 3983 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-isom 5227 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-of 6085 df-1st 6143 df-2nd 6144 df-recs 6308 df-irdg 6373 df-frec 6394 df-1o 6419 df-oadd 6423 df-er 6537 df-map 6652 df-pm 6653 df-en 6743 df-dom 6744 df-fin 6745 df-sup 6985 df-inf 6986 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-reap 8534 df-ap 8541 df-div 8632 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-5 8983 df-6 8984 df-7 8985 df-8 8986 df-9 8987 df-n0 9179 df-z 9256 df-uz 9531 df-q 9622 df-rp 9656 df-xneg 9774 df-xadd 9775 df-ioo 9894 df-ioc 9895 df-ico 9896 df-icc 9897 df-fz 10011 df-fzo 10145 df-seqfrec 10448 df-exp 10522 df-fac 10708 df-bc 10730 df-ihash 10758 df-shft 10826 df-cj 10853 df-re 10854 df-im 10855 df-rsqrt 11009 df-abs 11010 df-clim 11289 df-sumdc 11364 df-ef 11658 df-sin 11660 df-cos 11661 df-rest 12695 df-topgen 12714 df-psmet 13532 df-xmet 13533 df-met 13534 df-bl 13535 df-mopn 13536 df-top 13583 df-topon 13596 df-bases 13628 df-ntr 13681 df-cn 13773 df-cnp 13774 df-tx 13838 df-cncf 14143 df-limced 14210 df-dvap 14211 |
This theorem is referenced by: sin0pilem1 14287 |
Copyright terms: Public domain | W3C validator |