ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cosz12 GIF version

Theorem cosz12 13143
Description: Cosine has a zero between 1 and 2. (Contributed by Mario Carneiro and Jim Kingdon, 7-Mar-2024.)
Assertion
Ref Expression
cosz12 𝑝 ∈ (1(,)2)(cos‘𝑝) = 0

Proof of Theorem cosz12
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1red 7894 . . 3 (⊤ → 1 ∈ ℝ)
2 2re 8904 . . . 4 2 ∈ ℝ
32a1i 9 . . 3 (⊤ → 2 ∈ ℝ)
4 0red 7880 . . 3 (⊤ → 0 ∈ ℝ)
5 1lt2 9003 . . . 4 1 < 2
65a1i 9 . . 3 (⊤ → 1 < 2)
7 1re 7878 . . . . . 6 1 ∈ ℝ
8 iccssre 9860 . . . . . 6 ((1 ∈ ℝ ∧ 2 ∈ ℝ) → (1[,]2) ⊆ ℝ)
97, 2, 8mp2an 423 . . . . 5 (1[,]2) ⊆ ℝ
10 ax-resscn 7825 . . . . 5 ℝ ⊆ ℂ
119, 10sstri 3137 . . . 4 (1[,]2) ⊆ ℂ
1211a1i 9 . . 3 (⊤ → (1[,]2) ⊆ ℂ)
13 coscn 13133 . . . 4 cos ∈ (ℂ–cn→ℂ)
1413a1i 9 . . 3 (⊤ → cos ∈ (ℂ–cn→ℂ))
159sseli 3124 . . . . 5 (𝑥 ∈ (1[,]2) → 𝑥 ∈ ℝ)
1615recoscld 11625 . . . 4 (𝑥 ∈ (1[,]2) → (cos‘𝑥) ∈ ℝ)
1716adantl 275 . . 3 ((⊤ ∧ 𝑥 ∈ (1[,]2)) → (cos‘𝑥) ∈ ℝ)
18 sincos2sgn 11666 . . . . . 6 (0 < (sin‘2) ∧ (cos‘2) < 0)
1918simpri 112 . . . . 5 (cos‘2) < 0
20 sincos1sgn 11665 . . . . . 6 (0 < (sin‘1) ∧ 0 < (cos‘1))
2120simpri 112 . . . . 5 0 < (cos‘1)
2219, 21pm3.2i 270 . . . 4 ((cos‘2) < 0 ∧ 0 < (cos‘1))
2322a1i 9 . . 3 (⊤ → ((cos‘2) < 0 ∧ 0 < (cos‘1)))
24 cos12dec 11668 . . . . 5 ((𝑥 ∈ (1[,]2) ∧ 𝑦 ∈ (1[,]2) ∧ 𝑥 < 𝑦) → (cos‘𝑦) < (cos‘𝑥))
25243expb 1186 . . . 4 ((𝑥 ∈ (1[,]2) ∧ (𝑦 ∈ (1[,]2) ∧ 𝑥 < 𝑦)) → (cos‘𝑦) < (cos‘𝑥))
2625adantll 468 . . 3 (((⊤ ∧ 𝑥 ∈ (1[,]2)) ∧ (𝑦 ∈ (1[,]2) ∧ 𝑥 < 𝑦)) → (cos‘𝑦) < (cos‘𝑥))
271, 3, 4, 6, 12, 14, 17, 23, 26ivthdec 13064 . 2 (⊤ → ∃𝑝 ∈ (1(,)2)(cos‘𝑝) = 0)
2827mptru 1344 1 𝑝 ∈ (1(,)2)(cos‘𝑝) = 0
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1335  wtru 1336  wcel 2128  wrex 2436  wss 3102   class class class wbr 3966  cfv 5171  (class class class)co 5825  cc 7731  cr 7732  0cc0 7733  1c1 7734   < clt 7913  2c2 8885  (,)cioo 9793  [,]cicc 9796  sincsin 11545  cosccos 11546  cnccncf 12999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4080  ax-sep 4083  ax-nul 4091  ax-pow 4136  ax-pr 4170  ax-un 4394  ax-setind 4497  ax-iinf 4548  ax-cnex 7824  ax-resscn 7825  ax-1cn 7826  ax-1re 7827  ax-icn 7828  ax-addcl 7829  ax-addrcl 7830  ax-mulcl 7831  ax-mulrcl 7832  ax-addcom 7833  ax-mulcom 7834  ax-addass 7835  ax-mulass 7836  ax-distr 7837  ax-i2m1 7838  ax-0lt1 7839  ax-1rid 7840  ax-0id 7841  ax-rnegex 7842  ax-precex 7843  ax-cnre 7844  ax-pre-ltirr 7845  ax-pre-ltwlin 7846  ax-pre-lttrn 7847  ax-pre-apti 7848  ax-pre-ltadd 7849  ax-pre-mulgt0 7850  ax-pre-mulext 7851  ax-arch 7852  ax-caucvg 7853  ax-pre-suploc 7854  ax-addf 7855  ax-mulf 7856
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3774  df-int 3809  df-iun 3852  df-disj 3944  df-br 3967  df-opab 4027  df-mpt 4028  df-tr 4064  df-id 4254  df-po 4257  df-iso 4258  df-iord 4327  df-on 4329  df-ilim 4330  df-suc 4332  df-iom 4551  df-xp 4593  df-rel 4594  df-cnv 4595  df-co 4596  df-dm 4597  df-rn 4598  df-res 4599  df-ima 4600  df-iota 5136  df-fun 5173  df-fn 5174  df-f 5175  df-f1 5176  df-fo 5177  df-f1o 5178  df-fv 5179  df-isom 5180  df-riota 5781  df-ov 5828  df-oprab 5829  df-mpo 5830  df-of 6033  df-1st 6089  df-2nd 6090  df-recs 6253  df-irdg 6318  df-frec 6339  df-1o 6364  df-oadd 6368  df-er 6481  df-map 6596  df-pm 6597  df-en 6687  df-dom 6688  df-fin 6689  df-sup 6929  df-inf 6930  df-pnf 7915  df-mnf 7916  df-xr 7917  df-ltxr 7918  df-le 7919  df-sub 8049  df-neg 8050  df-reap 8451  df-ap 8458  df-div 8547  df-inn 8835  df-2 8893  df-3 8894  df-4 8895  df-5 8896  df-6 8897  df-7 8898  df-8 8899  df-9 8900  df-n0 9092  df-z 9169  df-uz 9441  df-q 9530  df-rp 9562  df-xneg 9680  df-xadd 9681  df-ioo 9797  df-ioc 9798  df-ico 9799  df-icc 9800  df-fz 9914  df-fzo 10046  df-seqfrec 10349  df-exp 10423  df-fac 10604  df-bc 10626  df-ihash 10654  df-shft 10719  df-cj 10746  df-re 10747  df-im 10748  df-rsqrt 10902  df-abs 10903  df-clim 11180  df-sumdc 11255  df-ef 11549  df-sin 11551  df-cos 11552  df-rest 12395  df-topgen 12414  df-psmet 12429  df-xmet 12430  df-met 12431  df-bl 12432  df-mopn 12433  df-top 12438  df-topon 12451  df-bases 12483  df-ntr 12538  df-cn 12630  df-cnp 12631  df-tx 12695  df-cncf 13000  df-limced 13067  df-dvap 13068
This theorem is referenced by:  sin0pilem1  13144
  Copyright terms: Public domain W3C validator