![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > expge0 | GIF version |
Description: A nonnegative real raised to a nonnegative integer is nonnegative. (Contributed by NM, 16-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.) |
Ref | Expression |
---|---|
expge0 | ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 0 ≤ (𝐴↑𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 4004 | . . . . 5 ⊢ (𝑧 = 𝐴 → (0 ≤ 𝑧 ↔ 0 ≤ 𝐴)) | |
2 | 1 | elrab 2893 | . . . 4 ⊢ (𝐴 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
3 | ssrab2 3240 | . . . . . . 7 ⊢ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ⊆ ℝ | |
4 | ax-resscn 7891 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
5 | 3, 4 | sstri 3164 | . . . . . 6 ⊢ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ⊆ ℂ |
6 | breq2 4004 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (0 ≤ 𝑧 ↔ 0 ≤ 𝑥)) | |
7 | 6 | elrab 2893 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) |
8 | breq2 4004 | . . . . . . . 8 ⊢ (𝑧 = 𝑦 → (0 ≤ 𝑧 ↔ 0 ≤ 𝑦)) | |
9 | 8 | elrab 2893 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) |
10 | remulcl 7927 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ) | |
11 | 10 | ad2ant2r 509 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → (𝑥 · 𝑦) ∈ ℝ) |
12 | mulge0 8563 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → 0 ≤ (𝑥 · 𝑦)) | |
13 | breq2 4004 | . . . . . . . . 9 ⊢ (𝑧 = (𝑥 · 𝑦) → (0 ≤ 𝑧 ↔ 0 ≤ (𝑥 · 𝑦))) | |
14 | 13 | elrab 2893 | . . . . . . . 8 ⊢ ((𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ ((𝑥 · 𝑦) ∈ ℝ ∧ 0 ≤ (𝑥 · 𝑦))) |
15 | 11, 12, 14 | sylanbrc 417 | . . . . . . 7 ⊢ (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧}) |
16 | 7, 9, 15 | syl2anb 291 | . . . . . 6 ⊢ ((𝑥 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧}) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧}) |
17 | 1re 7944 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
18 | 0le1 8425 | . . . . . . 7 ⊢ 0 ≤ 1 | |
19 | breq2 4004 | . . . . . . . 8 ⊢ (𝑧 = 1 → (0 ≤ 𝑧 ↔ 0 ≤ 1)) | |
20 | 19 | elrab 2893 | . . . . . . 7 ⊢ (1 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ (1 ∈ ℝ ∧ 0 ≤ 1)) |
21 | 17, 18, 20 | mpbir2an 942 | . . . . . 6 ⊢ 1 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} |
22 | 5, 16, 21 | expcllem 10514 | . . . . 5 ⊢ ((𝐴 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧}) |
23 | breq2 4004 | . . . . . . 7 ⊢ (𝑧 = (𝐴↑𝑁) → (0 ≤ 𝑧 ↔ 0 ≤ (𝐴↑𝑁))) | |
24 | 23 | elrab 2893 | . . . . . 6 ⊢ ((𝐴↑𝑁) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ ((𝐴↑𝑁) ∈ ℝ ∧ 0 ≤ (𝐴↑𝑁))) |
25 | 24 | simprbi 275 | . . . . 5 ⊢ ((𝐴↑𝑁) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} → 0 ≤ (𝐴↑𝑁)) |
26 | 22, 25 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ∧ 𝑁 ∈ ℕ0) → 0 ≤ (𝐴↑𝑁)) |
27 | 2, 26 | sylanbr 285 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑁 ∈ ℕ0) → 0 ≤ (𝐴↑𝑁)) |
28 | 27 | 3impa 1194 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝑁 ∈ ℕ0) → 0 ≤ (𝐴↑𝑁)) |
29 | 28 | 3com23 1209 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 0 ≤ (𝐴↑𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 ∈ wcel 2148 {crab 2459 class class class wbr 4000 (class class class)co 5869 ℂcc 7797 ℝcr 7798 0cc0 7799 1c1 7800 · cmul 7804 ≤ cle 7980 ℕ0cn0 9162 ↑cexp 10502 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4115 ax-sep 4118 ax-nul 4126 ax-pow 4171 ax-pr 4206 ax-un 4430 ax-setind 4533 ax-iinf 4584 ax-cnex 7890 ax-resscn 7891 ax-1cn 7892 ax-1re 7893 ax-icn 7894 ax-addcl 7895 ax-addrcl 7896 ax-mulcl 7897 ax-mulrcl 7898 ax-addcom 7899 ax-mulcom 7900 ax-addass 7901 ax-mulass 7902 ax-distr 7903 ax-i2m1 7904 ax-0lt1 7905 ax-1rid 7906 ax-0id 7907 ax-rnegex 7908 ax-precex 7909 ax-cnre 7910 ax-pre-ltirr 7911 ax-pre-ltwlin 7912 ax-pre-lttrn 7913 ax-pre-apti 7914 ax-pre-ltadd 7915 ax-pre-mulgt0 7916 ax-pre-mulext 7917 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3576 df-sn 3597 df-pr 3598 df-op 3600 df-uni 3808 df-int 3843 df-iun 3886 df-br 4001 df-opab 4062 df-mpt 4063 df-tr 4099 df-id 4290 df-po 4293 df-iso 4294 df-iord 4363 df-on 4365 df-ilim 4366 df-suc 4368 df-iom 4587 df-xp 4629 df-rel 4630 df-cnv 4631 df-co 4632 df-dm 4633 df-rn 4634 df-res 4635 df-ima 4636 df-iota 5174 df-fun 5214 df-fn 5215 df-f 5216 df-f1 5217 df-fo 5218 df-f1o 5219 df-fv 5220 df-riota 5825 df-ov 5872 df-oprab 5873 df-mpo 5874 df-1st 6135 df-2nd 6136 df-recs 6300 df-frec 6386 df-pnf 7981 df-mnf 7982 df-xr 7983 df-ltxr 7984 df-le 7985 df-sub 8117 df-neg 8118 df-reap 8519 df-ap 8526 df-div 8616 df-inn 8906 df-n0 9163 df-z 9240 df-uz 9515 df-seqfrec 10429 df-exp 10503 |
This theorem is referenced by: leexp2r 10557 leexp1a 10558 expge0d 10654 |
Copyright terms: Public domain | W3C validator |