| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expge0 | GIF version | ||
| Description: A nonnegative real raised to a nonnegative integer is nonnegative. (Contributed by NM, 16-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.) |
| Ref | Expression |
|---|---|
| expge0 | ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 0 ≤ (𝐴↑𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 4038 | . . . . 5 ⊢ (𝑧 = 𝐴 → (0 ≤ 𝑧 ↔ 0 ≤ 𝐴)) | |
| 2 | 1 | elrab 2920 | . . . 4 ⊢ (𝐴 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
| 3 | ssrab2 3269 | . . . . . . 7 ⊢ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ⊆ ℝ | |
| 4 | ax-resscn 7988 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
| 5 | 3, 4 | sstri 3193 | . . . . . 6 ⊢ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ⊆ ℂ |
| 6 | breq2 4038 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (0 ≤ 𝑧 ↔ 0 ≤ 𝑥)) | |
| 7 | 6 | elrab 2920 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) |
| 8 | breq2 4038 | . . . . . . . 8 ⊢ (𝑧 = 𝑦 → (0 ≤ 𝑧 ↔ 0 ≤ 𝑦)) | |
| 9 | 8 | elrab 2920 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) |
| 10 | remulcl 8024 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ) | |
| 11 | 10 | ad2ant2r 509 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → (𝑥 · 𝑦) ∈ ℝ) |
| 12 | mulge0 8663 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → 0 ≤ (𝑥 · 𝑦)) | |
| 13 | breq2 4038 | . . . . . . . . 9 ⊢ (𝑧 = (𝑥 · 𝑦) → (0 ≤ 𝑧 ↔ 0 ≤ (𝑥 · 𝑦))) | |
| 14 | 13 | elrab 2920 | . . . . . . . 8 ⊢ ((𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ ((𝑥 · 𝑦) ∈ ℝ ∧ 0 ≤ (𝑥 · 𝑦))) |
| 15 | 11, 12, 14 | sylanbrc 417 | . . . . . . 7 ⊢ (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧}) |
| 16 | 7, 9, 15 | syl2anb 291 | . . . . . 6 ⊢ ((𝑥 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧}) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧}) |
| 17 | 1re 8042 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 18 | 0le1 8525 | . . . . . . 7 ⊢ 0 ≤ 1 | |
| 19 | breq2 4038 | . . . . . . . 8 ⊢ (𝑧 = 1 → (0 ≤ 𝑧 ↔ 0 ≤ 1)) | |
| 20 | 19 | elrab 2920 | . . . . . . 7 ⊢ (1 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ (1 ∈ ℝ ∧ 0 ≤ 1)) |
| 21 | 17, 18, 20 | mpbir2an 944 | . . . . . 6 ⊢ 1 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} |
| 22 | 5, 16, 21 | expcllem 10659 | . . . . 5 ⊢ ((𝐴 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧}) |
| 23 | breq2 4038 | . . . . . . 7 ⊢ (𝑧 = (𝐴↑𝑁) → (0 ≤ 𝑧 ↔ 0 ≤ (𝐴↑𝑁))) | |
| 24 | 23 | elrab 2920 | . . . . . 6 ⊢ ((𝐴↑𝑁) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ ((𝐴↑𝑁) ∈ ℝ ∧ 0 ≤ (𝐴↑𝑁))) |
| 25 | 24 | simprbi 275 | . . . . 5 ⊢ ((𝐴↑𝑁) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} → 0 ≤ (𝐴↑𝑁)) |
| 26 | 22, 25 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ∧ 𝑁 ∈ ℕ0) → 0 ≤ (𝐴↑𝑁)) |
| 27 | 2, 26 | sylanbr 285 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑁 ∈ ℕ0) → 0 ≤ (𝐴↑𝑁)) |
| 28 | 27 | 3impa 1196 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝑁 ∈ ℕ0) → 0 ≤ (𝐴↑𝑁)) |
| 29 | 28 | 3com23 1211 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 0 ≤ (𝐴↑𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 ∈ wcel 2167 {crab 2479 class class class wbr 4034 (class class class)co 5925 ℂcc 7894 ℝcr 7895 0cc0 7896 1c1 7897 · cmul 7901 ≤ cle 8079 ℕ0cn0 9266 ↑cexp 10647 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-n0 9267 df-z 9344 df-uz 9619 df-seqfrec 10557 df-exp 10648 |
| This theorem is referenced by: leexp2r 10702 leexp1a 10703 expge0d 10800 |
| Copyright terms: Public domain | W3C validator |