Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > expge0 | GIF version |
Description: Nonnegative integer exponentiation with a nonnegative mantissa is nonnegative. (Contributed by NM, 16-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.) |
Ref | Expression |
---|---|
expge0 | ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 0 ≤ (𝐴↑𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 3965 | . . . . 5 ⊢ (𝑧 = 𝐴 → (0 ≤ 𝑧 ↔ 0 ≤ 𝐴)) | |
2 | 1 | elrab 2864 | . . . 4 ⊢ (𝐴 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
3 | ssrab2 3209 | . . . . . . 7 ⊢ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ⊆ ℝ | |
4 | ax-resscn 7803 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
5 | 3, 4 | sstri 3133 | . . . . . 6 ⊢ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ⊆ ℂ |
6 | breq2 3965 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (0 ≤ 𝑧 ↔ 0 ≤ 𝑥)) | |
7 | 6 | elrab 2864 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) |
8 | breq2 3965 | . . . . . . . 8 ⊢ (𝑧 = 𝑦 → (0 ≤ 𝑧 ↔ 0 ≤ 𝑦)) | |
9 | 8 | elrab 2864 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) |
10 | remulcl 7839 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ) | |
11 | 10 | ad2ant2r 501 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → (𝑥 · 𝑦) ∈ ℝ) |
12 | mulge0 8473 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → 0 ≤ (𝑥 · 𝑦)) | |
13 | breq2 3965 | . . . . . . . . 9 ⊢ (𝑧 = (𝑥 · 𝑦) → (0 ≤ 𝑧 ↔ 0 ≤ (𝑥 · 𝑦))) | |
14 | 13 | elrab 2864 | . . . . . . . 8 ⊢ ((𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ ((𝑥 · 𝑦) ∈ ℝ ∧ 0 ≤ (𝑥 · 𝑦))) |
15 | 11, 12, 14 | sylanbrc 414 | . . . . . . 7 ⊢ (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧}) |
16 | 7, 9, 15 | syl2anb 289 | . . . . . 6 ⊢ ((𝑥 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧}) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧}) |
17 | 1re 7856 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
18 | 0le1 8335 | . . . . . . 7 ⊢ 0 ≤ 1 | |
19 | breq2 3965 | . . . . . . . 8 ⊢ (𝑧 = 1 → (0 ≤ 𝑧 ↔ 0 ≤ 1)) | |
20 | 19 | elrab 2864 | . . . . . . 7 ⊢ (1 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ (1 ∈ ℝ ∧ 0 ≤ 1)) |
21 | 17, 18, 20 | mpbir2an 927 | . . . . . 6 ⊢ 1 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} |
22 | 5, 16, 21 | expcllem 10408 | . . . . 5 ⊢ ((𝐴 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧}) |
23 | breq2 3965 | . . . . . . 7 ⊢ (𝑧 = (𝐴↑𝑁) → (0 ≤ 𝑧 ↔ 0 ≤ (𝐴↑𝑁))) | |
24 | 23 | elrab 2864 | . . . . . 6 ⊢ ((𝐴↑𝑁) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ ((𝐴↑𝑁) ∈ ℝ ∧ 0 ≤ (𝐴↑𝑁))) |
25 | 24 | simprbi 273 | . . . . 5 ⊢ ((𝐴↑𝑁) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} → 0 ≤ (𝐴↑𝑁)) |
26 | 22, 25 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ∧ 𝑁 ∈ ℕ0) → 0 ≤ (𝐴↑𝑁)) |
27 | 2, 26 | sylanbr 283 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑁 ∈ ℕ0) → 0 ≤ (𝐴↑𝑁)) |
28 | 27 | 3impa 1177 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝑁 ∈ ℕ0) → 0 ≤ (𝐴↑𝑁)) |
29 | 28 | 3com23 1188 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 0 ≤ (𝐴↑𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 963 ∈ wcel 2125 {crab 2436 class class class wbr 3961 (class class class)co 5814 ℂcc 7709 ℝcr 7710 0cc0 7711 1c1 7712 · cmul 7716 ≤ cle 7892 ℕ0cn0 9069 ↑cexp 10396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-iinf 4541 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-mulrcl 7810 ax-addcom 7811 ax-mulcom 7812 ax-addass 7813 ax-mulass 7814 ax-distr 7815 ax-i2m1 7816 ax-0lt1 7817 ax-1rid 7818 ax-0id 7819 ax-rnegex 7820 ax-precex 7821 ax-cnre 7822 ax-pre-ltirr 7823 ax-pre-ltwlin 7824 ax-pre-lttrn 7825 ax-pre-apti 7826 ax-pre-ltadd 7827 ax-pre-mulgt0 7828 ax-pre-mulext 7829 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-reu 2439 df-rmo 2440 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-if 3502 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-tr 4059 df-id 4248 df-po 4251 df-iso 4252 df-iord 4321 df-on 4323 df-ilim 4324 df-suc 4326 df-iom 4544 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-1st 6078 df-2nd 6079 df-recs 6242 df-frec 6328 df-pnf 7893 df-mnf 7894 df-xr 7895 df-ltxr 7896 df-le 7897 df-sub 8027 df-neg 8028 df-reap 8429 df-ap 8436 df-div 8525 df-inn 8813 df-n0 9070 df-z 9147 df-uz 9419 df-seqfrec 10323 df-exp 10397 |
This theorem is referenced by: leexp2r 10451 leexp1a 10452 expge0d 10546 |
Copyright terms: Public domain | W3C validator |