Proof of Theorem climcvg1nlem
| Step | Hyp | Ref
 | Expression | 
| 1 |   | nnuz 9637 | 
. . 3
⊢ ℕ =
(ℤ≥‘1) | 
| 2 |   | 1zzd 9353 | 
. . 3
⊢ (𝜑 → 1 ∈
ℤ) | 
| 3 |   | climcvg1n.f | 
. . . . . . . 8
⊢ (𝜑 → 𝐹:ℕ⟶ℂ) | 
| 4 | 3 | ffvelcdmda 5697 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → (𝐹‘𝑥) ∈ ℂ) | 
| 5 | 4 | recld 11103 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → (ℜ‘(𝐹‘𝑥)) ∈ ℝ) | 
| 6 |   | climcvg1nlem.g | 
. . . . . 6
⊢ 𝐺 = (𝑥 ∈ ℕ ↦ (ℜ‘(𝐹‘𝑥))) | 
| 7 | 5, 6 | fmptd 5716 | 
. . . . 5
⊢ (𝜑 → 𝐺:ℕ⟶ℝ) | 
| 8 |   | climcvg1n.c | 
. . . . 5
⊢ (𝜑 → 𝐶 ∈
ℝ+) | 
| 9 |   | climcvg1n.cau | 
. . . . . 6
⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘((𝐹‘𝑘) − (𝐹‘𝑛))) < (𝐶 / 𝑛)) | 
| 10 |   | eluznn 9674 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘𝑛)) → 𝑘 ∈ ℕ) | 
| 11 | 10 | adantll 476 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑘 ∈ ℕ) | 
| 12 | 3 | ad2antrr 488 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝐹:ℕ⟶ℂ) | 
| 13 | 12, 11 | ffvelcdmd 5698 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐹‘𝑘) ∈ ℂ) | 
| 14 | 13 | recld 11103 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (ℜ‘(𝐹‘𝑘)) ∈ ℝ) | 
| 15 |   | fveq2 5558 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑘 → (𝐹‘𝑥) = (𝐹‘𝑘)) | 
| 16 | 15 | fveq2d 5562 | 
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑘 → (ℜ‘(𝐹‘𝑥)) = (ℜ‘(𝐹‘𝑘))) | 
| 17 | 16, 6 | fvmptg 5637 | 
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℕ ∧
(ℜ‘(𝐹‘𝑘)) ∈ ℝ) → (𝐺‘𝑘) = (ℜ‘(𝐹‘𝑘))) | 
| 18 | 11, 14, 17 | syl2anc 411 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐺‘𝑘) = (ℜ‘(𝐹‘𝑘))) | 
| 19 |   | simplr 528 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑛 ∈ ℕ) | 
| 20 | 12, 19 | ffvelcdmd 5698 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐹‘𝑛) ∈ ℂ) | 
| 21 | 20 | recld 11103 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (ℜ‘(𝐹‘𝑛)) ∈ ℝ) | 
| 22 |   | fveq2 5558 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑛 → (𝐹‘𝑥) = (𝐹‘𝑛)) | 
| 23 | 22 | fveq2d 5562 | 
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑛 → (ℜ‘(𝐹‘𝑥)) = (ℜ‘(𝐹‘𝑛))) | 
| 24 | 23, 6 | fvmptg 5637 | 
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ ∧
(ℜ‘(𝐹‘𝑛)) ∈ ℝ) → (𝐺‘𝑛) = (ℜ‘(𝐹‘𝑛))) | 
| 25 | 19, 21, 24 | syl2anc 411 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐺‘𝑛) = (ℜ‘(𝐹‘𝑛))) | 
| 26 | 18, 25 | oveq12d 5940 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑘) − (𝐺‘𝑛)) = ((ℜ‘(𝐹‘𝑘)) − (ℜ‘(𝐹‘𝑛)))) | 
| 27 | 13, 20 | resubd 11126 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (ℜ‘((𝐹‘𝑘) − (𝐹‘𝑛))) = ((ℜ‘(𝐹‘𝑘)) − (ℜ‘(𝐹‘𝑛)))) | 
| 28 | 26, 27 | eqtr4d 2232 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑘) − (𝐺‘𝑛)) = (ℜ‘((𝐹‘𝑘) − (𝐹‘𝑛)))) | 
| 29 | 28 | fveq2d 5562 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (abs‘((𝐺‘𝑘) − (𝐺‘𝑛))) = (abs‘(ℜ‘((𝐹‘𝑘) − (𝐹‘𝑛))))) | 
| 30 | 13, 20 | subcld 8337 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐹‘𝑘) − (𝐹‘𝑛)) ∈ ℂ) | 
| 31 |   | absrele 11248 | 
. . . . . . . . . . 11
⊢ (((𝐹‘𝑘) − (𝐹‘𝑛)) ∈ ℂ →
(abs‘(ℜ‘((𝐹‘𝑘) − (𝐹‘𝑛)))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑛)))) | 
| 32 | 30, 31 | syl 14 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) →
(abs‘(ℜ‘((𝐹‘𝑘) − (𝐹‘𝑛)))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑛)))) | 
| 33 | 29, 32 | eqbrtrd 4055 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (abs‘((𝐺‘𝑘) − (𝐺‘𝑛))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑛)))) | 
| 34 | 30 | recld 11103 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (ℜ‘((𝐹‘𝑘) − (𝐹‘𝑛))) ∈ ℝ) | 
| 35 | 34 | recnd 8055 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (ℜ‘((𝐹‘𝑘) − (𝐹‘𝑛))) ∈ ℂ) | 
| 36 | 28, 35 | eqeltrd 2273 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑘) − (𝐺‘𝑛)) ∈ ℂ) | 
| 37 | 36 | abscld 11346 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (abs‘((𝐺‘𝑘) − (𝐺‘𝑛))) ∈ ℝ) | 
| 38 | 30 | abscld 11346 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (abs‘((𝐹‘𝑘) − (𝐹‘𝑛))) ∈ ℝ) | 
| 39 | 8 | ad2antrr 488 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝐶 ∈
ℝ+) | 
| 40 | 19 | nnrpd 9769 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑛 ∈ ℝ+) | 
| 41 | 39, 40 | rpdivcld 9789 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐶 / 𝑛) ∈
ℝ+) | 
| 42 | 41 | rpred 9771 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐶 / 𝑛) ∈ ℝ) | 
| 43 |   | lelttr 8115 | 
. . . . . . . . . 10
⊢
(((abs‘((𝐺‘𝑘) − (𝐺‘𝑛))) ∈ ℝ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑛))) ∈ ℝ ∧ (𝐶 / 𝑛) ∈ ℝ) → (((abs‘((𝐺‘𝑘) − (𝐺‘𝑛))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑛))) ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑛))) < (𝐶 / 𝑛)) → (abs‘((𝐺‘𝑘) − (𝐺‘𝑛))) < (𝐶 / 𝑛))) | 
| 44 | 37, 38, 42, 43 | syl3anc 1249 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (((abs‘((𝐺‘𝑘) − (𝐺‘𝑛))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑛))) ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑛))) < (𝐶 / 𝑛)) → (abs‘((𝐺‘𝑘) − (𝐺‘𝑛))) < (𝐶 / 𝑛))) | 
| 45 | 33, 44 | mpand 429 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((abs‘((𝐹‘𝑘) − (𝐹‘𝑛))) < (𝐶 / 𝑛) → (abs‘((𝐺‘𝑘) − (𝐺‘𝑛))) < (𝐶 / 𝑛))) | 
| 46 | 45 | ralimdva 2564 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (∀𝑘 ∈
(ℤ≥‘𝑛)(abs‘((𝐹‘𝑘) − (𝐹‘𝑛))) < (𝐶 / 𝑛) → ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘((𝐺‘𝑘) − (𝐺‘𝑛))) < (𝐶 / 𝑛))) | 
| 47 | 46 | ralimdva 2564 | 
. . . . . 6
⊢ (𝜑 → (∀𝑛 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑛)(abs‘((𝐹‘𝑘) − (𝐹‘𝑛))) < (𝐶 / 𝑛) → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘((𝐺‘𝑘) − (𝐺‘𝑛))) < (𝐶 / 𝑛))) | 
| 48 | 9, 47 | mpd 13 | 
. . . . 5
⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘((𝐺‘𝑘) − (𝐺‘𝑛))) < (𝐶 / 𝑛)) | 
| 49 | 7, 8, 48 | climrecvg1n 11513 | 
. . . 4
⊢ (𝜑 → 𝐺 ∈ dom ⇝ ) | 
| 50 |   | climdm 11460 | 
. . . 4
⊢ (𝐺 ∈ dom ⇝ ↔ 𝐺 ⇝ ( ⇝ ‘𝐺)) | 
| 51 | 49, 50 | sylib 122 | 
. . 3
⊢ (𝜑 → 𝐺 ⇝ ( ⇝ ‘𝐺)) | 
| 52 |   | nnex 8996 | 
. . . 4
⊢ ℕ
∈ V | 
| 53 |   | fex 5791 | 
. . . 4
⊢ ((𝐹:ℕ⟶ℂ ∧
ℕ ∈ V) → 𝐹
∈ V) | 
| 54 | 3, 52, 53 | sylancl 413 | 
. . 3
⊢ (𝜑 → 𝐹 ∈ V) | 
| 55 | 4 | imcld 11104 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → (ℑ‘(𝐹‘𝑥)) ∈ ℝ) | 
| 56 |   | climcvg1nlem.h | 
. . . . . . 7
⊢ 𝐻 = (𝑥 ∈ ℕ ↦ (ℑ‘(𝐹‘𝑥))) | 
| 57 | 55, 56 | fmptd 5716 | 
. . . . . 6
⊢ (𝜑 → 𝐻:ℕ⟶ℝ) | 
| 58 | 13 | imcld 11104 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (ℑ‘(𝐹‘𝑘)) ∈ ℝ) | 
| 59 | 15 | fveq2d 5562 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑘 → (ℑ‘(𝐹‘𝑥)) = (ℑ‘(𝐹‘𝑘))) | 
| 60 | 59, 56 | fvmptg 5637 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℕ ∧
(ℑ‘(𝐹‘𝑘)) ∈ ℝ) → (𝐻‘𝑘) = (ℑ‘(𝐹‘𝑘))) | 
| 61 | 11, 58, 60 | syl2anc 411 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐻‘𝑘) = (ℑ‘(𝐹‘𝑘))) | 
| 62 | 20 | imcld 11104 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (ℑ‘(𝐹‘𝑛)) ∈ ℝ) | 
| 63 | 22 | fveq2d 5562 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑛 → (ℑ‘(𝐹‘𝑥)) = (ℑ‘(𝐹‘𝑛))) | 
| 64 | 63, 56 | fvmptg 5637 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℕ ∧
(ℑ‘(𝐹‘𝑛)) ∈ ℝ) → (𝐻‘𝑛) = (ℑ‘(𝐹‘𝑛))) | 
| 65 | 19, 62, 64 | syl2anc 411 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐻‘𝑛) = (ℑ‘(𝐹‘𝑛))) | 
| 66 | 61, 65 | oveq12d 5940 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐻‘𝑘) − (𝐻‘𝑛)) = ((ℑ‘(𝐹‘𝑘)) − (ℑ‘(𝐹‘𝑛)))) | 
| 67 | 13, 20 | imsubd 11127 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (ℑ‘((𝐹‘𝑘) − (𝐹‘𝑛))) = ((ℑ‘(𝐹‘𝑘)) − (ℑ‘(𝐹‘𝑛)))) | 
| 68 | 66, 67 | eqtr4d 2232 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐻‘𝑘) − (𝐻‘𝑛)) = (ℑ‘((𝐹‘𝑘) − (𝐹‘𝑛)))) | 
| 69 | 68 | fveq2d 5562 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (abs‘((𝐻‘𝑘) − (𝐻‘𝑛))) = (abs‘(ℑ‘((𝐹‘𝑘) − (𝐹‘𝑛))))) | 
| 70 |   | absimle 11249 | 
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑘) − (𝐹‘𝑛)) ∈ ℂ →
(abs‘(ℑ‘((𝐹‘𝑘) − (𝐹‘𝑛)))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑛)))) | 
| 71 | 30, 70 | syl 14 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) →
(abs‘(ℑ‘((𝐹‘𝑘) − (𝐹‘𝑛)))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑛)))) | 
| 72 | 69, 71 | eqbrtrd 4055 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (abs‘((𝐻‘𝑘) − (𝐻‘𝑛))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑛)))) | 
| 73 | 61, 58 | eqeltrd 2273 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐻‘𝑘) ∈ ℝ) | 
| 74 | 65, 62 | eqeltrd 2273 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐻‘𝑛) ∈ ℝ) | 
| 75 | 73, 74 | resubcld 8407 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐻‘𝑘) − (𝐻‘𝑛)) ∈ ℝ) | 
| 76 | 75 | recnd 8055 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐻‘𝑘) − (𝐻‘𝑛)) ∈ ℂ) | 
| 77 | 76 | abscld 11346 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (abs‘((𝐻‘𝑘) − (𝐻‘𝑛))) ∈ ℝ) | 
| 78 |   | lelttr 8115 | 
. . . . . . . . . . 11
⊢
(((abs‘((𝐻‘𝑘) − (𝐻‘𝑛))) ∈ ℝ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑛))) ∈ ℝ ∧ (𝐶 / 𝑛) ∈ ℝ) → (((abs‘((𝐻‘𝑘) − (𝐻‘𝑛))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑛))) ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑛))) < (𝐶 / 𝑛)) → (abs‘((𝐻‘𝑘) − (𝐻‘𝑛))) < (𝐶 / 𝑛))) | 
| 79 | 77, 38, 42, 78 | syl3anc 1249 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (((abs‘((𝐻‘𝑘) − (𝐻‘𝑛))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑛))) ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑛))) < (𝐶 / 𝑛)) → (abs‘((𝐻‘𝑘) − (𝐻‘𝑛))) < (𝐶 / 𝑛))) | 
| 80 | 72, 79 | mpand 429 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((abs‘((𝐹‘𝑘) − (𝐹‘𝑛))) < (𝐶 / 𝑛) → (abs‘((𝐻‘𝑘) − (𝐻‘𝑛))) < (𝐶 / 𝑛))) | 
| 81 | 80 | ralimdva 2564 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (∀𝑘 ∈
(ℤ≥‘𝑛)(abs‘((𝐹‘𝑘) − (𝐹‘𝑛))) < (𝐶 / 𝑛) → ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘((𝐻‘𝑘) − (𝐻‘𝑛))) < (𝐶 / 𝑛))) | 
| 82 | 81 | ralimdva 2564 | 
. . . . . . 7
⊢ (𝜑 → (∀𝑛 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑛)(abs‘((𝐹‘𝑘) − (𝐹‘𝑛))) < (𝐶 / 𝑛) → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘((𝐻‘𝑘) − (𝐻‘𝑛))) < (𝐶 / 𝑛))) | 
| 83 | 9, 82 | mpd 13 | 
. . . . . 6
⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘((𝐻‘𝑘) − (𝐻‘𝑛))) < (𝐶 / 𝑛)) | 
| 84 | 57, 8, 83 | climrecvg1n 11513 | 
. . . . 5
⊢ (𝜑 → 𝐻 ∈ dom ⇝ ) | 
| 85 |   | climdm 11460 | 
. . . . 5
⊢ (𝐻 ∈ dom ⇝ ↔ 𝐻 ⇝ ( ⇝ ‘𝐻)) | 
| 86 | 84, 85 | sylib 122 | 
. . . 4
⊢ (𝜑 → 𝐻 ⇝ ( ⇝ ‘𝐻)) | 
| 87 |   | ax-icn 7974 | 
. . . . 5
⊢ i ∈
ℂ | 
| 88 | 87 | a1i 9 | 
. . . 4
⊢ (𝜑 → i ∈
ℂ) | 
| 89 |   | climcvg1nlem.j | 
. . . . . 6
⊢ 𝐽 = (𝑥 ∈ ℕ ↦ (i · (𝐻‘𝑥))) | 
| 90 | 52 | mptex 5788 | 
. . . . . 6
⊢ (𝑥 ∈ ℕ ↦ (i
· (𝐻‘𝑥))) ∈ V | 
| 91 | 89, 90 | eqeltri 2269 | 
. . . . 5
⊢ 𝐽 ∈ V | 
| 92 | 91 | a1i 9 | 
. . . 4
⊢ (𝜑 → 𝐽 ∈ V) | 
| 93 |   | ax-resscn 7971 | 
. . . . . . 7
⊢ ℝ
⊆ ℂ | 
| 94 | 93 | a1i 9 | 
. . . . . 6
⊢ (𝜑 → ℝ ⊆
ℂ) | 
| 95 | 57, 94 | fssd 5420 | 
. . . . 5
⊢ (𝜑 → 𝐻:ℕ⟶ℂ) | 
| 96 | 95 | ffvelcdmda 5697 | 
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐻‘𝑘) ∈ ℂ) | 
| 97 | 89 | a1i 9 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐽 = (𝑥 ∈ ℕ ↦ (i · (𝐻‘𝑥)))) | 
| 98 |   | fveq2 5558 | 
. . . . . . 7
⊢ (𝑥 = 𝑘 → (𝐻‘𝑥) = (𝐻‘𝑘)) | 
| 99 | 98 | oveq2d 5938 | 
. . . . . 6
⊢ (𝑥 = 𝑘 → (i · (𝐻‘𝑥)) = (i · (𝐻‘𝑘))) | 
| 100 | 99 | adantl 277 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 = 𝑘) → (i · (𝐻‘𝑥)) = (i · (𝐻‘𝑘))) | 
| 101 |   | simpr 110 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) | 
| 102 | 87 | a1i 9 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → i ∈
ℂ) | 
| 103 | 102, 96 | mulcld 8047 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (i · (𝐻‘𝑘)) ∈ ℂ) | 
| 104 | 97, 100, 101, 103 | fvmptd 5642 | 
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐽‘𝑘) = (i · (𝐻‘𝑘))) | 
| 105 | 1, 2, 86, 88, 92, 96, 104 | climmulc2 11496 | 
. . 3
⊢ (𝜑 → 𝐽 ⇝ (i · ( ⇝ ‘𝐻))) | 
| 106 | 7 | ffvelcdmda 5697 | 
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) ∈ ℝ) | 
| 107 | 106 | recnd 8055 | 
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) ∈ ℂ) | 
| 108 | 104, 103 | eqeltrd 2273 | 
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐽‘𝑘) ∈ ℂ) | 
| 109 | 3 | ffvelcdmda 5697 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) | 
| 110 | 109 | replimd 11106 | 
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = ((ℜ‘(𝐹‘𝑘)) + (i · (ℑ‘(𝐹‘𝑘))))) | 
| 111 | 109 | recld 11103 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (ℜ‘(𝐹‘𝑘)) ∈ ℝ) | 
| 112 | 101, 111,
17 | syl2anc 411 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) = (ℜ‘(𝐹‘𝑘))) | 
| 113 | 109 | imcld 11104 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (ℑ‘(𝐹‘𝑘)) ∈ ℝ) | 
| 114 | 101, 113,
60 | syl2anc 411 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐻‘𝑘) = (ℑ‘(𝐹‘𝑘))) | 
| 115 | 114 | oveq2d 5938 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (i · (𝐻‘𝑘)) = (i · (ℑ‘(𝐹‘𝑘)))) | 
| 116 | 104, 115 | eqtrd 2229 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐽‘𝑘) = (i · (ℑ‘(𝐹‘𝑘)))) | 
| 117 | 112, 116 | oveq12d 5940 | 
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐺‘𝑘) + (𝐽‘𝑘)) = ((ℜ‘(𝐹‘𝑘)) + (i · (ℑ‘(𝐹‘𝑘))))) | 
| 118 | 110, 117 | eqtr4d 2232 | 
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = ((𝐺‘𝑘) + (𝐽‘𝑘))) | 
| 119 | 1, 2, 51, 54, 105, 107, 108, 118 | climadd 11491 | 
. 2
⊢ (𝜑 → 𝐹 ⇝ (( ⇝ ‘𝐺) + (i · ( ⇝ ‘𝐻)))) | 
| 120 |   | climrel 11445 | 
. . 3
⊢ Rel
⇝ | 
| 121 | 120 | releldmi 4905 | 
. 2
⊢ (𝐹 ⇝ (( ⇝ ‘𝐺) + (i · ( ⇝
‘𝐻))) → 𝐹 ∈ dom ⇝
) | 
| 122 | 119, 121 | syl 14 | 
1
⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) |