ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcvg1nlem GIF version

Theorem climcvg1nlem 11855
Description: Lemma for climcvg1n 11856. We construct sequences of the real and imaginary parts of each term of 𝐹, show those converge, and use that to show that 𝐹 converges. (Contributed by Jim Kingdon, 24-Aug-2021.)
Hypotheses
Ref Expression
climcvg1n.f (𝜑𝐹:ℕ⟶ℂ)
climcvg1n.c (𝜑𝐶 ∈ ℝ+)
climcvg1n.cau (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛))
climcvg1nlem.g 𝐺 = (𝑥 ∈ ℕ ↦ (ℜ‘(𝐹𝑥)))
climcvg1nlem.h 𝐻 = (𝑥 ∈ ℕ ↦ (ℑ‘(𝐹𝑥)))
climcvg1nlem.j 𝐽 = (𝑥 ∈ ℕ ↦ (i · (𝐻𝑥)))
Assertion
Ref Expression
climcvg1nlem (𝜑𝐹 ∈ dom ⇝ )
Distinct variable groups:   𝐶,𝑘,𝑛   𝑘,𝐹,𝑥   𝑘,𝐺,𝑛   𝑘,𝐻,𝑛,𝑥   𝑘,𝐽   𝜑,𝑘,𝑛,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑛)   𝐺(𝑥)   𝐽(𝑥,𝑛)

Proof of Theorem climcvg1nlem
StepHypRef Expression
1 nnuz 9754 . . 3 ℕ = (ℤ‘1)
2 1zzd 9469 . . 3 (𝜑 → 1 ∈ ℤ)
3 climcvg1n.f . . . . . . . 8 (𝜑𝐹:ℕ⟶ℂ)
43ffvelcdmda 5769 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (𝐹𝑥) ∈ ℂ)
54recld 11444 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → (ℜ‘(𝐹𝑥)) ∈ ℝ)
6 climcvg1nlem.g . . . . . 6 𝐺 = (𝑥 ∈ ℕ ↦ (ℜ‘(𝐹𝑥)))
75, 6fmptd 5788 . . . . 5 (𝜑𝐺:ℕ⟶ℝ)
8 climcvg1n.c . . . . 5 (𝜑𝐶 ∈ ℝ+)
9 climcvg1n.cau . . . . . 6 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛))
10 eluznn 9791 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
1110adantll 476 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
123ad2antrr 488 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐹:ℕ⟶ℂ)
1312, 11ffvelcdmd 5770 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ ℂ)
1413recld 11444 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℜ‘(𝐹𝑘)) ∈ ℝ)
15 fveq2 5626 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
1615fveq2d 5630 . . . . . . . . . . . . . . 15 (𝑥 = 𝑘 → (ℜ‘(𝐹𝑥)) = (ℜ‘(𝐹𝑘)))
1716, 6fvmptg 5709 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ (ℜ‘(𝐹𝑘)) ∈ ℝ) → (𝐺𝑘) = (ℜ‘(𝐹𝑘)))
1811, 14, 17syl2anc 411 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐺𝑘) = (ℜ‘(𝐹𝑘)))
19 simplr 528 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℕ)
2012, 19ffvelcdmd 5770 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑛) ∈ ℂ)
2120recld 11444 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℜ‘(𝐹𝑛)) ∈ ℝ)
22 fveq2 5626 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑛 → (𝐹𝑥) = (𝐹𝑛))
2322fveq2d 5630 . . . . . . . . . . . . . . 15 (𝑥 = 𝑛 → (ℜ‘(𝐹𝑥)) = (ℜ‘(𝐹𝑛)))
2423, 6fvmptg 5709 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ (ℜ‘(𝐹𝑛)) ∈ ℝ) → (𝐺𝑛) = (ℜ‘(𝐹𝑛)))
2519, 21, 24syl2anc 411 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐺𝑛) = (ℜ‘(𝐹𝑛)))
2618, 25oveq12d 6018 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐺𝑘) − (𝐺𝑛)) = ((ℜ‘(𝐹𝑘)) − (ℜ‘(𝐹𝑛))))
2713, 20resubd 11467 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℜ‘((𝐹𝑘) − (𝐹𝑛))) = ((ℜ‘(𝐹𝑘)) − (ℜ‘(𝐹𝑛))))
2826, 27eqtr4d 2265 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐺𝑘) − (𝐺𝑛)) = (ℜ‘((𝐹𝑘) − (𝐹𝑛))))
2928fveq2d 5630 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐺𝑘) − (𝐺𝑛))) = (abs‘(ℜ‘((𝐹𝑘) − (𝐹𝑛)))))
3013, 20subcld 8453 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑘) − (𝐹𝑛)) ∈ ℂ)
31 absrele 11589 . . . . . . . . . . 11 (((𝐹𝑘) − (𝐹𝑛)) ∈ ℂ → (abs‘(ℜ‘((𝐹𝑘) − (𝐹𝑛)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))))
3230, 31syl 14 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘(ℜ‘((𝐹𝑘) − (𝐹𝑛)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))))
3329, 32eqbrtrd 4104 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐺𝑘) − (𝐺𝑛))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))))
3430recld 11444 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℜ‘((𝐹𝑘) − (𝐹𝑛))) ∈ ℝ)
3534recnd 8171 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℜ‘((𝐹𝑘) − (𝐹𝑛))) ∈ ℂ)
3628, 35eqeltrd 2306 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐺𝑘) − (𝐺𝑛)) ∈ ℂ)
3736abscld 11687 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐺𝑘) − (𝐺𝑛))) ∈ ℝ)
3830abscld 11687 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐹𝑘) − (𝐹𝑛))) ∈ ℝ)
398ad2antrr 488 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐶 ∈ ℝ+)
4019nnrpd 9886 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℝ+)
4139, 40rpdivcld 9906 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐶 / 𝑛) ∈ ℝ+)
4241rpred 9888 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐶 / 𝑛) ∈ ℝ)
43 lelttr 8231 . . . . . . . . . 10 (((abs‘((𝐺𝑘) − (𝐺𝑛))) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑛))) ∈ ℝ ∧ (𝐶 / 𝑛) ∈ ℝ) → (((abs‘((𝐺𝑘) − (𝐺𝑛))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛)) → (abs‘((𝐺𝑘) − (𝐺𝑛))) < (𝐶 / 𝑛)))
4437, 38, 42, 43syl3anc 1271 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((abs‘((𝐺𝑘) − (𝐺𝑛))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛)) → (abs‘((𝐺𝑘) − (𝐺𝑛))) < (𝐶 / 𝑛)))
4533, 44mpand 429 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛) → (abs‘((𝐺𝑘) − (𝐺𝑛))) < (𝐶 / 𝑛)))
4645ralimdva 2597 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛) → ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐺𝑘) − (𝐺𝑛))) < (𝐶 / 𝑛)))
4746ralimdva 2597 . . . . . 6 (𝜑 → (∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛) → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐺𝑘) − (𝐺𝑛))) < (𝐶 / 𝑛)))
489, 47mpd 13 . . . . 5 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐺𝑘) − (𝐺𝑛))) < (𝐶 / 𝑛))
497, 8, 48climrecvg1n 11854 . . . 4 (𝜑𝐺 ∈ dom ⇝ )
50 climdm 11801 . . . 4 (𝐺 ∈ dom ⇝ ↔ 𝐺 ⇝ ( ⇝ ‘𝐺))
5149, 50sylib 122 . . 3 (𝜑𝐺 ⇝ ( ⇝ ‘𝐺))
52 nnex 9112 . . . 4 ℕ ∈ V
53 fex 5867 . . . 4 ((𝐹:ℕ⟶ℂ ∧ ℕ ∈ V) → 𝐹 ∈ V)
543, 52, 53sylancl 413 . . 3 (𝜑𝐹 ∈ V)
554imcld 11445 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (ℑ‘(𝐹𝑥)) ∈ ℝ)
56 climcvg1nlem.h . . . . . . 7 𝐻 = (𝑥 ∈ ℕ ↦ (ℑ‘(𝐹𝑥)))
5755, 56fmptd 5788 . . . . . 6 (𝜑𝐻:ℕ⟶ℝ)
5813imcld 11445 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℑ‘(𝐹𝑘)) ∈ ℝ)
5915fveq2d 5630 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → (ℑ‘(𝐹𝑥)) = (ℑ‘(𝐹𝑘)))
6059, 56fvmptg 5709 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ (ℑ‘(𝐹𝑘)) ∈ ℝ) → (𝐻𝑘) = (ℑ‘(𝐹𝑘)))
6111, 58, 60syl2anc 411 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐻𝑘) = (ℑ‘(𝐹𝑘)))
6220imcld 11445 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℑ‘(𝐹𝑛)) ∈ ℝ)
6322fveq2d 5630 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑛 → (ℑ‘(𝐹𝑥)) = (ℑ‘(𝐹𝑛)))
6463, 56fvmptg 5709 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ (ℑ‘(𝐹𝑛)) ∈ ℝ) → (𝐻𝑛) = (ℑ‘(𝐹𝑛)))
6519, 62, 64syl2anc 411 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐻𝑛) = (ℑ‘(𝐹𝑛)))
6661, 65oveq12d 6018 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐻𝑘) − (𝐻𝑛)) = ((ℑ‘(𝐹𝑘)) − (ℑ‘(𝐹𝑛))))
6713, 20imsubd 11468 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℑ‘((𝐹𝑘) − (𝐹𝑛))) = ((ℑ‘(𝐹𝑘)) − (ℑ‘(𝐹𝑛))))
6866, 67eqtr4d 2265 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐻𝑘) − (𝐻𝑛)) = (ℑ‘((𝐹𝑘) − (𝐹𝑛))))
6968fveq2d 5630 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐻𝑘) − (𝐻𝑛))) = (abs‘(ℑ‘((𝐹𝑘) − (𝐹𝑛)))))
70 absimle 11590 . . . . . . . . . . . 12 (((𝐹𝑘) − (𝐹𝑛)) ∈ ℂ → (abs‘(ℑ‘((𝐹𝑘) − (𝐹𝑛)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))))
7130, 70syl 14 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘(ℑ‘((𝐹𝑘) − (𝐹𝑛)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))))
7269, 71eqbrtrd 4104 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐻𝑘) − (𝐻𝑛))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))))
7361, 58eqeltrd 2306 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐻𝑘) ∈ ℝ)
7465, 62eqeltrd 2306 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐻𝑛) ∈ ℝ)
7573, 74resubcld 8523 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐻𝑘) − (𝐻𝑛)) ∈ ℝ)
7675recnd 8171 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐻𝑘) − (𝐻𝑛)) ∈ ℂ)
7776abscld 11687 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐻𝑘) − (𝐻𝑛))) ∈ ℝ)
78 lelttr 8231 . . . . . . . . . . 11 (((abs‘((𝐻𝑘) − (𝐻𝑛))) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑛))) ∈ ℝ ∧ (𝐶 / 𝑛) ∈ ℝ) → (((abs‘((𝐻𝑘) − (𝐻𝑛))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛)) → (abs‘((𝐻𝑘) − (𝐻𝑛))) < (𝐶 / 𝑛)))
7977, 38, 42, 78syl3anc 1271 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((abs‘((𝐻𝑘) − (𝐻𝑛))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛)) → (abs‘((𝐻𝑘) − (𝐻𝑛))) < (𝐶 / 𝑛)))
8072, 79mpand 429 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛) → (abs‘((𝐻𝑘) − (𝐻𝑛))) < (𝐶 / 𝑛)))
8180ralimdva 2597 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛) → ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐻𝑘) − (𝐻𝑛))) < (𝐶 / 𝑛)))
8281ralimdva 2597 . . . . . . 7 (𝜑 → (∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛) → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐻𝑘) − (𝐻𝑛))) < (𝐶 / 𝑛)))
839, 82mpd 13 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐻𝑘) − (𝐻𝑛))) < (𝐶 / 𝑛))
8457, 8, 83climrecvg1n 11854 . . . . 5 (𝜑𝐻 ∈ dom ⇝ )
85 climdm 11801 . . . . 5 (𝐻 ∈ dom ⇝ ↔ 𝐻 ⇝ ( ⇝ ‘𝐻))
8684, 85sylib 122 . . . 4 (𝜑𝐻 ⇝ ( ⇝ ‘𝐻))
87 ax-icn 8090 . . . . 5 i ∈ ℂ
8887a1i 9 . . . 4 (𝜑 → i ∈ ℂ)
89 climcvg1nlem.j . . . . . 6 𝐽 = (𝑥 ∈ ℕ ↦ (i · (𝐻𝑥)))
9052mptex 5864 . . . . . 6 (𝑥 ∈ ℕ ↦ (i · (𝐻𝑥))) ∈ V
9189, 90eqeltri 2302 . . . . 5 𝐽 ∈ V
9291a1i 9 . . . 4 (𝜑𝐽 ∈ V)
93 ax-resscn 8087 . . . . . . 7 ℝ ⊆ ℂ
9493a1i 9 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
9557, 94fssd 5485 . . . . 5 (𝜑𝐻:ℕ⟶ℂ)
9695ffvelcdmda 5769 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐻𝑘) ∈ ℂ)
9789a1i 9 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝐽 = (𝑥 ∈ ℕ ↦ (i · (𝐻𝑥))))
98 fveq2 5626 . . . . . . 7 (𝑥 = 𝑘 → (𝐻𝑥) = (𝐻𝑘))
9998oveq2d 6016 . . . . . 6 (𝑥 = 𝑘 → (i · (𝐻𝑥)) = (i · (𝐻𝑘)))
10099adantl 277 . . . . 5 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 = 𝑘) → (i · (𝐻𝑥)) = (i · (𝐻𝑘)))
101 simpr 110 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
10287a1i 9 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → i ∈ ℂ)
103102, 96mulcld 8163 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (i · (𝐻𝑘)) ∈ ℂ)
10497, 100, 101, 103fvmptd 5714 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐽𝑘) = (i · (𝐻𝑘)))
1051, 2, 86, 88, 92, 96, 104climmulc2 11837 . . 3 (𝜑𝐽 ⇝ (i · ( ⇝ ‘𝐻)))
1067ffvelcdmda 5769 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
107106recnd 8171 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℂ)
108104, 103eqeltrd 2306 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝐽𝑘) ∈ ℂ)
1093ffvelcdmda 5769 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
110109replimd 11447 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = ((ℜ‘(𝐹𝑘)) + (i · (ℑ‘(𝐹𝑘)))))
111109recld 11444 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (ℜ‘(𝐹𝑘)) ∈ ℝ)
112101, 111, 17syl2anc 411 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) = (ℜ‘(𝐹𝑘)))
113109imcld 11445 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (ℑ‘(𝐹𝑘)) ∈ ℝ)
114101, 113, 60syl2anc 411 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐻𝑘) = (ℑ‘(𝐹𝑘)))
115114oveq2d 6016 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (i · (𝐻𝑘)) = (i · (ℑ‘(𝐹𝑘))))
116104, 115eqtrd 2262 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐽𝑘) = (i · (ℑ‘(𝐹𝑘))))
117112, 116oveq12d 6018 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝐺𝑘) + (𝐽𝑘)) = ((ℜ‘(𝐹𝑘)) + (i · (ℑ‘(𝐹𝑘)))))
118110, 117eqtr4d 2265 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = ((𝐺𝑘) + (𝐽𝑘)))
1191, 2, 51, 54, 105, 107, 108, 118climadd 11832 . 2 (𝜑𝐹 ⇝ (( ⇝ ‘𝐺) + (i · ( ⇝ ‘𝐻))))
120 climrel 11786 . . 3 Rel ⇝
121120releldmi 4962 . 2 (𝐹 ⇝ (( ⇝ ‘𝐺) + (i · ( ⇝ ‘𝐻))) → 𝐹 ∈ dom ⇝ )
122119, 121syl 14 1 (𝜑𝐹 ∈ dom ⇝ )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wral 2508  Vcvv 2799  wss 3197   class class class wbr 4082  cmpt 4144  dom cdm 4718  wf 5313  cfv 5317  (class class class)co 6000  cc 7993  cr 7994  1c1 7996  ici 7997   + caddc 7998   · cmul 8000   < clt 8177  cle 8178  cmin 8313   / cdiv 8815  cn 9106  cuz 9718  +crp 9845  cre 11346  cim 11347  abscabs 11503  cli 11784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-rp 9846  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-clim 11785
This theorem is referenced by:  climcvg1n  11856
  Copyright terms: Public domain W3C validator