ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcvg1nlem GIF version

Theorem climcvg1nlem 11290
Description: Lemma for climcvg1n 11291. We construct sequences of the real and imaginary parts of each term of 𝐹, show those converge, and use that to show that 𝐹 converges. (Contributed by Jim Kingdon, 24-Aug-2021.)
Hypotheses
Ref Expression
climcvg1n.f (𝜑𝐹:ℕ⟶ℂ)
climcvg1n.c (𝜑𝐶 ∈ ℝ+)
climcvg1n.cau (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛))
climcvg1nlem.g 𝐺 = (𝑥 ∈ ℕ ↦ (ℜ‘(𝐹𝑥)))
climcvg1nlem.h 𝐻 = (𝑥 ∈ ℕ ↦ (ℑ‘(𝐹𝑥)))
climcvg1nlem.j 𝐽 = (𝑥 ∈ ℕ ↦ (i · (𝐻𝑥)))
Assertion
Ref Expression
climcvg1nlem (𝜑𝐹 ∈ dom ⇝ )
Distinct variable groups:   𝐶,𝑘,𝑛   𝑘,𝐹,𝑥   𝑘,𝐺,𝑛   𝑘,𝐻,𝑛,𝑥   𝑘,𝐽   𝜑,𝑘,𝑛,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑛)   𝐺(𝑥)   𝐽(𝑥,𝑛)

Proof of Theorem climcvg1nlem
StepHypRef Expression
1 nnuz 9501 . . 3 ℕ = (ℤ‘1)
2 1zzd 9218 . . 3 (𝜑 → 1 ∈ ℤ)
3 climcvg1n.f . . . . . . . 8 (𝜑𝐹:ℕ⟶ℂ)
43ffvelrnda 5620 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (𝐹𝑥) ∈ ℂ)
54recld 10880 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → (ℜ‘(𝐹𝑥)) ∈ ℝ)
6 climcvg1nlem.g . . . . . 6 𝐺 = (𝑥 ∈ ℕ ↦ (ℜ‘(𝐹𝑥)))
75, 6fmptd 5639 . . . . 5 (𝜑𝐺:ℕ⟶ℝ)
8 climcvg1n.c . . . . 5 (𝜑𝐶 ∈ ℝ+)
9 climcvg1n.cau . . . . . 6 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛))
10 eluznn 9538 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
1110adantll 468 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
123ad2antrr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐹:ℕ⟶ℂ)
1312, 11ffvelrnd 5621 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ ℂ)
1413recld 10880 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℜ‘(𝐹𝑘)) ∈ ℝ)
15 fveq2 5486 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
1615fveq2d 5490 . . . . . . . . . . . . . . 15 (𝑥 = 𝑘 → (ℜ‘(𝐹𝑥)) = (ℜ‘(𝐹𝑘)))
1716, 6fvmptg 5562 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ (ℜ‘(𝐹𝑘)) ∈ ℝ) → (𝐺𝑘) = (ℜ‘(𝐹𝑘)))
1811, 14, 17syl2anc 409 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐺𝑘) = (ℜ‘(𝐹𝑘)))
19 simplr 520 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℕ)
2012, 19ffvelrnd 5621 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑛) ∈ ℂ)
2120recld 10880 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℜ‘(𝐹𝑛)) ∈ ℝ)
22 fveq2 5486 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑛 → (𝐹𝑥) = (𝐹𝑛))
2322fveq2d 5490 . . . . . . . . . . . . . . 15 (𝑥 = 𝑛 → (ℜ‘(𝐹𝑥)) = (ℜ‘(𝐹𝑛)))
2423, 6fvmptg 5562 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ (ℜ‘(𝐹𝑛)) ∈ ℝ) → (𝐺𝑛) = (ℜ‘(𝐹𝑛)))
2519, 21, 24syl2anc 409 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐺𝑛) = (ℜ‘(𝐹𝑛)))
2618, 25oveq12d 5860 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐺𝑘) − (𝐺𝑛)) = ((ℜ‘(𝐹𝑘)) − (ℜ‘(𝐹𝑛))))
2713, 20resubd 10903 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℜ‘((𝐹𝑘) − (𝐹𝑛))) = ((ℜ‘(𝐹𝑘)) − (ℜ‘(𝐹𝑛))))
2826, 27eqtr4d 2201 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐺𝑘) − (𝐺𝑛)) = (ℜ‘((𝐹𝑘) − (𝐹𝑛))))
2928fveq2d 5490 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐺𝑘) − (𝐺𝑛))) = (abs‘(ℜ‘((𝐹𝑘) − (𝐹𝑛)))))
3013, 20subcld 8209 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑘) − (𝐹𝑛)) ∈ ℂ)
31 absrele 11025 . . . . . . . . . . 11 (((𝐹𝑘) − (𝐹𝑛)) ∈ ℂ → (abs‘(ℜ‘((𝐹𝑘) − (𝐹𝑛)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))))
3230, 31syl 14 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘(ℜ‘((𝐹𝑘) − (𝐹𝑛)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))))
3329, 32eqbrtrd 4004 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐺𝑘) − (𝐺𝑛))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))))
3430recld 10880 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℜ‘((𝐹𝑘) − (𝐹𝑛))) ∈ ℝ)
3534recnd 7927 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℜ‘((𝐹𝑘) − (𝐹𝑛))) ∈ ℂ)
3628, 35eqeltrd 2243 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐺𝑘) − (𝐺𝑛)) ∈ ℂ)
3736abscld 11123 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐺𝑘) − (𝐺𝑛))) ∈ ℝ)
3830abscld 11123 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐹𝑘) − (𝐹𝑛))) ∈ ℝ)
398ad2antrr 480 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐶 ∈ ℝ+)
4019nnrpd 9630 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℝ+)
4139, 40rpdivcld 9650 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐶 / 𝑛) ∈ ℝ+)
4241rpred 9632 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐶 / 𝑛) ∈ ℝ)
43 lelttr 7987 . . . . . . . . . 10 (((abs‘((𝐺𝑘) − (𝐺𝑛))) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑛))) ∈ ℝ ∧ (𝐶 / 𝑛) ∈ ℝ) → (((abs‘((𝐺𝑘) − (𝐺𝑛))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛)) → (abs‘((𝐺𝑘) − (𝐺𝑛))) < (𝐶 / 𝑛)))
4437, 38, 42, 43syl3anc 1228 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((abs‘((𝐺𝑘) − (𝐺𝑛))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛)) → (abs‘((𝐺𝑘) − (𝐺𝑛))) < (𝐶 / 𝑛)))
4533, 44mpand 426 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛) → (abs‘((𝐺𝑘) − (𝐺𝑛))) < (𝐶 / 𝑛)))
4645ralimdva 2533 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛) → ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐺𝑘) − (𝐺𝑛))) < (𝐶 / 𝑛)))
4746ralimdva 2533 . . . . . 6 (𝜑 → (∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛) → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐺𝑘) − (𝐺𝑛))) < (𝐶 / 𝑛)))
489, 47mpd 13 . . . . 5 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐺𝑘) − (𝐺𝑛))) < (𝐶 / 𝑛))
497, 8, 48climrecvg1n 11289 . . . 4 (𝜑𝐺 ∈ dom ⇝ )
50 climdm 11236 . . . 4 (𝐺 ∈ dom ⇝ ↔ 𝐺 ⇝ ( ⇝ ‘𝐺))
5149, 50sylib 121 . . 3 (𝜑𝐺 ⇝ ( ⇝ ‘𝐺))
52 nnex 8863 . . . 4 ℕ ∈ V
53 fex 5714 . . . 4 ((𝐹:ℕ⟶ℂ ∧ ℕ ∈ V) → 𝐹 ∈ V)
543, 52, 53sylancl 410 . . 3 (𝜑𝐹 ∈ V)
554imcld 10881 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (ℑ‘(𝐹𝑥)) ∈ ℝ)
56 climcvg1nlem.h . . . . . . 7 𝐻 = (𝑥 ∈ ℕ ↦ (ℑ‘(𝐹𝑥)))
5755, 56fmptd 5639 . . . . . 6 (𝜑𝐻:ℕ⟶ℝ)
5813imcld 10881 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℑ‘(𝐹𝑘)) ∈ ℝ)
5915fveq2d 5490 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → (ℑ‘(𝐹𝑥)) = (ℑ‘(𝐹𝑘)))
6059, 56fvmptg 5562 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ (ℑ‘(𝐹𝑘)) ∈ ℝ) → (𝐻𝑘) = (ℑ‘(𝐹𝑘)))
6111, 58, 60syl2anc 409 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐻𝑘) = (ℑ‘(𝐹𝑘)))
6220imcld 10881 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℑ‘(𝐹𝑛)) ∈ ℝ)
6322fveq2d 5490 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑛 → (ℑ‘(𝐹𝑥)) = (ℑ‘(𝐹𝑛)))
6463, 56fvmptg 5562 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ (ℑ‘(𝐹𝑛)) ∈ ℝ) → (𝐻𝑛) = (ℑ‘(𝐹𝑛)))
6519, 62, 64syl2anc 409 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐻𝑛) = (ℑ‘(𝐹𝑛)))
6661, 65oveq12d 5860 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐻𝑘) − (𝐻𝑛)) = ((ℑ‘(𝐹𝑘)) − (ℑ‘(𝐹𝑛))))
6713, 20imsubd 10904 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℑ‘((𝐹𝑘) − (𝐹𝑛))) = ((ℑ‘(𝐹𝑘)) − (ℑ‘(𝐹𝑛))))
6866, 67eqtr4d 2201 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐻𝑘) − (𝐻𝑛)) = (ℑ‘((𝐹𝑘) − (𝐹𝑛))))
6968fveq2d 5490 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐻𝑘) − (𝐻𝑛))) = (abs‘(ℑ‘((𝐹𝑘) − (𝐹𝑛)))))
70 absimle 11026 . . . . . . . . . . . 12 (((𝐹𝑘) − (𝐹𝑛)) ∈ ℂ → (abs‘(ℑ‘((𝐹𝑘) − (𝐹𝑛)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))))
7130, 70syl 14 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘(ℑ‘((𝐹𝑘) − (𝐹𝑛)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))))
7269, 71eqbrtrd 4004 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐻𝑘) − (𝐻𝑛))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))))
7361, 58eqeltrd 2243 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐻𝑘) ∈ ℝ)
7465, 62eqeltrd 2243 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐻𝑛) ∈ ℝ)
7573, 74resubcld 8279 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐻𝑘) − (𝐻𝑛)) ∈ ℝ)
7675recnd 7927 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐻𝑘) − (𝐻𝑛)) ∈ ℂ)
7776abscld 11123 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐻𝑘) − (𝐻𝑛))) ∈ ℝ)
78 lelttr 7987 . . . . . . . . . . 11 (((abs‘((𝐻𝑘) − (𝐻𝑛))) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑛))) ∈ ℝ ∧ (𝐶 / 𝑛) ∈ ℝ) → (((abs‘((𝐻𝑘) − (𝐻𝑛))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛)) → (abs‘((𝐻𝑘) − (𝐻𝑛))) < (𝐶 / 𝑛)))
7977, 38, 42, 78syl3anc 1228 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((abs‘((𝐻𝑘) − (𝐻𝑛))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛)) → (abs‘((𝐻𝑘) − (𝐻𝑛))) < (𝐶 / 𝑛)))
8072, 79mpand 426 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛) → (abs‘((𝐻𝑘) − (𝐻𝑛))) < (𝐶 / 𝑛)))
8180ralimdva 2533 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛) → ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐻𝑘) − (𝐻𝑛))) < (𝐶 / 𝑛)))
8281ralimdva 2533 . . . . . . 7 (𝜑 → (∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛) → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐻𝑘) − (𝐻𝑛))) < (𝐶 / 𝑛)))
839, 82mpd 13 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐻𝑘) − (𝐻𝑛))) < (𝐶 / 𝑛))
8457, 8, 83climrecvg1n 11289 . . . . 5 (𝜑𝐻 ∈ dom ⇝ )
85 climdm 11236 . . . . 5 (𝐻 ∈ dom ⇝ ↔ 𝐻 ⇝ ( ⇝ ‘𝐻))
8684, 85sylib 121 . . . 4 (𝜑𝐻 ⇝ ( ⇝ ‘𝐻))
87 ax-icn 7848 . . . . 5 i ∈ ℂ
8887a1i 9 . . . 4 (𝜑 → i ∈ ℂ)
89 climcvg1nlem.j . . . . . 6 𝐽 = (𝑥 ∈ ℕ ↦ (i · (𝐻𝑥)))
9052mptex 5711 . . . . . 6 (𝑥 ∈ ℕ ↦ (i · (𝐻𝑥))) ∈ V
9189, 90eqeltri 2239 . . . . 5 𝐽 ∈ V
9291a1i 9 . . . 4 (𝜑𝐽 ∈ V)
93 ax-resscn 7845 . . . . . . 7 ℝ ⊆ ℂ
9493a1i 9 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
9557, 94fssd 5350 . . . . 5 (𝜑𝐻:ℕ⟶ℂ)
9695ffvelrnda 5620 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐻𝑘) ∈ ℂ)
9789a1i 9 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝐽 = (𝑥 ∈ ℕ ↦ (i · (𝐻𝑥))))
98 fveq2 5486 . . . . . . 7 (𝑥 = 𝑘 → (𝐻𝑥) = (𝐻𝑘))
9998oveq2d 5858 . . . . . 6 (𝑥 = 𝑘 → (i · (𝐻𝑥)) = (i · (𝐻𝑘)))
10099adantl 275 . . . . 5 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 = 𝑘) → (i · (𝐻𝑥)) = (i · (𝐻𝑘)))
101 simpr 109 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
10287a1i 9 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → i ∈ ℂ)
103102, 96mulcld 7919 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (i · (𝐻𝑘)) ∈ ℂ)
10497, 100, 101, 103fvmptd 5567 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐽𝑘) = (i · (𝐻𝑘)))
1051, 2, 86, 88, 92, 96, 104climmulc2 11272 . . 3 (𝜑𝐽 ⇝ (i · ( ⇝ ‘𝐻)))
1067ffvelrnda 5620 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
107106recnd 7927 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℂ)
108104, 103eqeltrd 2243 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝐽𝑘) ∈ ℂ)
1093ffvelrnda 5620 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
110109replimd 10883 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = ((ℜ‘(𝐹𝑘)) + (i · (ℑ‘(𝐹𝑘)))))
111109recld 10880 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (ℜ‘(𝐹𝑘)) ∈ ℝ)
112101, 111, 17syl2anc 409 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) = (ℜ‘(𝐹𝑘)))
113109imcld 10881 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (ℑ‘(𝐹𝑘)) ∈ ℝ)
114101, 113, 60syl2anc 409 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐻𝑘) = (ℑ‘(𝐹𝑘)))
115114oveq2d 5858 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (i · (𝐻𝑘)) = (i · (ℑ‘(𝐹𝑘))))
116104, 115eqtrd 2198 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐽𝑘) = (i · (ℑ‘(𝐹𝑘))))
117112, 116oveq12d 5860 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝐺𝑘) + (𝐽𝑘)) = ((ℜ‘(𝐹𝑘)) + (i · (ℑ‘(𝐹𝑘)))))
118110, 117eqtr4d 2201 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = ((𝐺𝑘) + (𝐽𝑘)))
1191, 2, 51, 54, 105, 107, 108, 118climadd 11267 . 2 (𝜑𝐹 ⇝ (( ⇝ ‘𝐺) + (i · ( ⇝ ‘𝐻))))
120 climrel 11221 . . 3 Rel ⇝
121120releldmi 4843 . 2 (𝐹 ⇝ (( ⇝ ‘𝐺) + (i · ( ⇝ ‘𝐻))) → 𝐹 ∈ dom ⇝ )
122119, 121syl 14 1 (𝜑𝐹 ∈ dom ⇝ )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  wral 2444  Vcvv 2726  wss 3116   class class class wbr 3982  cmpt 4043  dom cdm 4604  wf 5184  cfv 5188  (class class class)co 5842  cc 7751  cr 7752  1c1 7754  ici 7755   + caddc 7756   · cmul 7758   < clt 7933  cle 7934  cmin 8069   / cdiv 8568  cn 8857  cuz 9466  +crp 9589  cre 10782  cim 10783  abscabs 10939  cli 11219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220
This theorem is referenced by:  climcvg1n  11291
  Copyright terms: Public domain W3C validator