ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcvg1nlem GIF version

Theorem climcvg1nlem 11111
Description: Lemma for climcvg1n 11112. We construct sequences of the real and imaginary parts of each term of 𝐹, show those converge, and use that to show that 𝐹 converges. (Contributed by Jim Kingdon, 24-Aug-2021.)
Hypotheses
Ref Expression
climcvg1n.f (𝜑𝐹:ℕ⟶ℂ)
climcvg1n.c (𝜑𝐶 ∈ ℝ+)
climcvg1n.cau (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛))
climcvg1nlem.g 𝐺 = (𝑥 ∈ ℕ ↦ (ℜ‘(𝐹𝑥)))
climcvg1nlem.h 𝐻 = (𝑥 ∈ ℕ ↦ (ℑ‘(𝐹𝑥)))
climcvg1nlem.j 𝐽 = (𝑥 ∈ ℕ ↦ (i · (𝐻𝑥)))
Assertion
Ref Expression
climcvg1nlem (𝜑𝐹 ∈ dom ⇝ )
Distinct variable groups:   𝐶,𝑘,𝑛   𝑘,𝐹,𝑥   𝑘,𝐺,𝑛   𝑘,𝐻,𝑛,𝑥   𝑘,𝐽   𝜑,𝑘,𝑛,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑛)   𝐺(𝑥)   𝐽(𝑥,𝑛)

Proof of Theorem climcvg1nlem
StepHypRef Expression
1 nnuz 9354 . . 3 ℕ = (ℤ‘1)
2 1zzd 9074 . . 3 (𝜑 → 1 ∈ ℤ)
3 climcvg1n.f . . . . . . . 8 (𝜑𝐹:ℕ⟶ℂ)
43ffvelrnda 5548 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (𝐹𝑥) ∈ ℂ)
54recld 10703 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → (ℜ‘(𝐹𝑥)) ∈ ℝ)
6 climcvg1nlem.g . . . . . 6 𝐺 = (𝑥 ∈ ℕ ↦ (ℜ‘(𝐹𝑥)))
75, 6fmptd 5567 . . . . 5 (𝜑𝐺:ℕ⟶ℝ)
8 climcvg1n.c . . . . 5 (𝜑𝐶 ∈ ℝ+)
9 climcvg1n.cau . . . . . 6 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛))
10 eluznn 9387 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
1110adantll 467 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
123ad2antrr 479 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐹:ℕ⟶ℂ)
1312, 11ffvelrnd 5549 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ ℂ)
1413recld 10703 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℜ‘(𝐹𝑘)) ∈ ℝ)
15 fveq2 5414 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
1615fveq2d 5418 . . . . . . . . . . . . . . 15 (𝑥 = 𝑘 → (ℜ‘(𝐹𝑥)) = (ℜ‘(𝐹𝑘)))
1716, 6fvmptg 5490 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ (ℜ‘(𝐹𝑘)) ∈ ℝ) → (𝐺𝑘) = (ℜ‘(𝐹𝑘)))
1811, 14, 17syl2anc 408 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐺𝑘) = (ℜ‘(𝐹𝑘)))
19 simplr 519 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℕ)
2012, 19ffvelrnd 5549 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑛) ∈ ℂ)
2120recld 10703 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℜ‘(𝐹𝑛)) ∈ ℝ)
22 fveq2 5414 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑛 → (𝐹𝑥) = (𝐹𝑛))
2322fveq2d 5418 . . . . . . . . . . . . . . 15 (𝑥 = 𝑛 → (ℜ‘(𝐹𝑥)) = (ℜ‘(𝐹𝑛)))
2423, 6fvmptg 5490 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ (ℜ‘(𝐹𝑛)) ∈ ℝ) → (𝐺𝑛) = (ℜ‘(𝐹𝑛)))
2519, 21, 24syl2anc 408 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐺𝑛) = (ℜ‘(𝐹𝑛)))
2618, 25oveq12d 5785 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐺𝑘) − (𝐺𝑛)) = ((ℜ‘(𝐹𝑘)) − (ℜ‘(𝐹𝑛))))
2713, 20resubd 10726 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℜ‘((𝐹𝑘) − (𝐹𝑛))) = ((ℜ‘(𝐹𝑘)) − (ℜ‘(𝐹𝑛))))
2826, 27eqtr4d 2173 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐺𝑘) − (𝐺𝑛)) = (ℜ‘((𝐹𝑘) − (𝐹𝑛))))
2928fveq2d 5418 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐺𝑘) − (𝐺𝑛))) = (abs‘(ℜ‘((𝐹𝑘) − (𝐹𝑛)))))
3013, 20subcld 8066 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑘) − (𝐹𝑛)) ∈ ℂ)
31 absrele 10848 . . . . . . . . . . 11 (((𝐹𝑘) − (𝐹𝑛)) ∈ ℂ → (abs‘(ℜ‘((𝐹𝑘) − (𝐹𝑛)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))))
3230, 31syl 14 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘(ℜ‘((𝐹𝑘) − (𝐹𝑛)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))))
3329, 32eqbrtrd 3945 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐺𝑘) − (𝐺𝑛))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))))
3430recld 10703 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℜ‘((𝐹𝑘) − (𝐹𝑛))) ∈ ℝ)
3534recnd 7787 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℜ‘((𝐹𝑘) − (𝐹𝑛))) ∈ ℂ)
3628, 35eqeltrd 2214 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐺𝑘) − (𝐺𝑛)) ∈ ℂ)
3736abscld 10946 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐺𝑘) − (𝐺𝑛))) ∈ ℝ)
3830abscld 10946 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐹𝑘) − (𝐹𝑛))) ∈ ℝ)
398ad2antrr 479 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐶 ∈ ℝ+)
4019nnrpd 9475 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℝ+)
4139, 40rpdivcld 9494 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐶 / 𝑛) ∈ ℝ+)
4241rpred 9476 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐶 / 𝑛) ∈ ℝ)
43 lelttr 7845 . . . . . . . . . 10 (((abs‘((𝐺𝑘) − (𝐺𝑛))) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑛))) ∈ ℝ ∧ (𝐶 / 𝑛) ∈ ℝ) → (((abs‘((𝐺𝑘) − (𝐺𝑛))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛)) → (abs‘((𝐺𝑘) − (𝐺𝑛))) < (𝐶 / 𝑛)))
4437, 38, 42, 43syl3anc 1216 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((abs‘((𝐺𝑘) − (𝐺𝑛))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛)) → (abs‘((𝐺𝑘) − (𝐺𝑛))) < (𝐶 / 𝑛)))
4533, 44mpand 425 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛) → (abs‘((𝐺𝑘) − (𝐺𝑛))) < (𝐶 / 𝑛)))
4645ralimdva 2497 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛) → ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐺𝑘) − (𝐺𝑛))) < (𝐶 / 𝑛)))
4746ralimdva 2497 . . . . . 6 (𝜑 → (∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛) → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐺𝑘) − (𝐺𝑛))) < (𝐶 / 𝑛)))
489, 47mpd 13 . . . . 5 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐺𝑘) − (𝐺𝑛))) < (𝐶 / 𝑛))
497, 8, 48climrecvg1n 11110 . . . 4 (𝜑𝐺 ∈ dom ⇝ )
50 climdm 11057 . . . 4 (𝐺 ∈ dom ⇝ ↔ 𝐺 ⇝ ( ⇝ ‘𝐺))
5149, 50sylib 121 . . 3 (𝜑𝐺 ⇝ ( ⇝ ‘𝐺))
52 nnex 8719 . . . 4 ℕ ∈ V
53 fex 5640 . . . 4 ((𝐹:ℕ⟶ℂ ∧ ℕ ∈ V) → 𝐹 ∈ V)
543, 52, 53sylancl 409 . . 3 (𝜑𝐹 ∈ V)
554imcld 10704 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (ℑ‘(𝐹𝑥)) ∈ ℝ)
56 climcvg1nlem.h . . . . . . 7 𝐻 = (𝑥 ∈ ℕ ↦ (ℑ‘(𝐹𝑥)))
5755, 56fmptd 5567 . . . . . 6 (𝜑𝐻:ℕ⟶ℝ)
5813imcld 10704 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℑ‘(𝐹𝑘)) ∈ ℝ)
5915fveq2d 5418 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → (ℑ‘(𝐹𝑥)) = (ℑ‘(𝐹𝑘)))
6059, 56fvmptg 5490 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ (ℑ‘(𝐹𝑘)) ∈ ℝ) → (𝐻𝑘) = (ℑ‘(𝐹𝑘)))
6111, 58, 60syl2anc 408 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐻𝑘) = (ℑ‘(𝐹𝑘)))
6220imcld 10704 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℑ‘(𝐹𝑛)) ∈ ℝ)
6322fveq2d 5418 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑛 → (ℑ‘(𝐹𝑥)) = (ℑ‘(𝐹𝑛)))
6463, 56fvmptg 5490 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ (ℑ‘(𝐹𝑛)) ∈ ℝ) → (𝐻𝑛) = (ℑ‘(𝐹𝑛)))
6519, 62, 64syl2anc 408 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐻𝑛) = (ℑ‘(𝐹𝑛)))
6661, 65oveq12d 5785 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐻𝑘) − (𝐻𝑛)) = ((ℑ‘(𝐹𝑘)) − (ℑ‘(𝐹𝑛))))
6713, 20imsubd 10727 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℑ‘((𝐹𝑘) − (𝐹𝑛))) = ((ℑ‘(𝐹𝑘)) − (ℑ‘(𝐹𝑛))))
6866, 67eqtr4d 2173 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐻𝑘) − (𝐻𝑛)) = (ℑ‘((𝐹𝑘) − (𝐹𝑛))))
6968fveq2d 5418 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐻𝑘) − (𝐻𝑛))) = (abs‘(ℑ‘((𝐹𝑘) − (𝐹𝑛)))))
70 absimle 10849 . . . . . . . . . . . 12 (((𝐹𝑘) − (𝐹𝑛)) ∈ ℂ → (abs‘(ℑ‘((𝐹𝑘) − (𝐹𝑛)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))))
7130, 70syl 14 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘(ℑ‘((𝐹𝑘) − (𝐹𝑛)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))))
7269, 71eqbrtrd 3945 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐻𝑘) − (𝐻𝑛))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))))
7361, 58eqeltrd 2214 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐻𝑘) ∈ ℝ)
7465, 62eqeltrd 2214 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐻𝑛) ∈ ℝ)
7573, 74resubcld 8136 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐻𝑘) − (𝐻𝑛)) ∈ ℝ)
7675recnd 7787 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐻𝑘) − (𝐻𝑛)) ∈ ℂ)
7776abscld 10946 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐻𝑘) − (𝐻𝑛))) ∈ ℝ)
78 lelttr 7845 . . . . . . . . . . 11 (((abs‘((𝐻𝑘) − (𝐻𝑛))) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑛))) ∈ ℝ ∧ (𝐶 / 𝑛) ∈ ℝ) → (((abs‘((𝐻𝑘) − (𝐻𝑛))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛)) → (abs‘((𝐻𝑘) − (𝐻𝑛))) < (𝐶 / 𝑛)))
7977, 38, 42, 78syl3anc 1216 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((abs‘((𝐻𝑘) − (𝐻𝑛))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛)) → (abs‘((𝐻𝑘) − (𝐻𝑛))) < (𝐶 / 𝑛)))
8072, 79mpand 425 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛) → (abs‘((𝐻𝑘) − (𝐻𝑛))) < (𝐶 / 𝑛)))
8180ralimdva 2497 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛) → ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐻𝑘) − (𝐻𝑛))) < (𝐶 / 𝑛)))
8281ralimdva 2497 . . . . . . 7 (𝜑 → (∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛) → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐻𝑘) − (𝐻𝑛))) < (𝐶 / 𝑛)))
839, 82mpd 13 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐻𝑘) − (𝐻𝑛))) < (𝐶 / 𝑛))
8457, 8, 83climrecvg1n 11110 . . . . 5 (𝜑𝐻 ∈ dom ⇝ )
85 climdm 11057 . . . . 5 (𝐻 ∈ dom ⇝ ↔ 𝐻 ⇝ ( ⇝ ‘𝐻))
8684, 85sylib 121 . . . 4 (𝜑𝐻 ⇝ ( ⇝ ‘𝐻))
87 ax-icn 7708 . . . . 5 i ∈ ℂ
8887a1i 9 . . . 4 (𝜑 → i ∈ ℂ)
89 climcvg1nlem.j . . . . . 6 𝐽 = (𝑥 ∈ ℕ ↦ (i · (𝐻𝑥)))
9052mptex 5639 . . . . . 6 (𝑥 ∈ ℕ ↦ (i · (𝐻𝑥))) ∈ V
9189, 90eqeltri 2210 . . . . 5 𝐽 ∈ V
9291a1i 9 . . . 4 (𝜑𝐽 ∈ V)
93 ax-resscn 7705 . . . . . . 7 ℝ ⊆ ℂ
9493a1i 9 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
9557, 94fssd 5280 . . . . 5 (𝜑𝐻:ℕ⟶ℂ)
9695ffvelrnda 5548 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐻𝑘) ∈ ℂ)
9789a1i 9 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝐽 = (𝑥 ∈ ℕ ↦ (i · (𝐻𝑥))))
98 fveq2 5414 . . . . . . 7 (𝑥 = 𝑘 → (𝐻𝑥) = (𝐻𝑘))
9998oveq2d 5783 . . . . . 6 (𝑥 = 𝑘 → (i · (𝐻𝑥)) = (i · (𝐻𝑘)))
10099adantl 275 . . . . 5 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 = 𝑘) → (i · (𝐻𝑥)) = (i · (𝐻𝑘)))
101 simpr 109 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
10287a1i 9 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → i ∈ ℂ)
103102, 96mulcld 7779 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (i · (𝐻𝑘)) ∈ ℂ)
10497, 100, 101, 103fvmptd 5495 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐽𝑘) = (i · (𝐻𝑘)))
1051, 2, 86, 88, 92, 96, 104climmulc2 11093 . . 3 (𝜑𝐽 ⇝ (i · ( ⇝ ‘𝐻)))
1067ffvelrnda 5548 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
107106recnd 7787 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℂ)
108104, 103eqeltrd 2214 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝐽𝑘) ∈ ℂ)
1093ffvelrnda 5548 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
110109replimd 10706 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = ((ℜ‘(𝐹𝑘)) + (i · (ℑ‘(𝐹𝑘)))))
111109recld 10703 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (ℜ‘(𝐹𝑘)) ∈ ℝ)
112101, 111, 17syl2anc 408 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) = (ℜ‘(𝐹𝑘)))
113109imcld 10704 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (ℑ‘(𝐹𝑘)) ∈ ℝ)
114101, 113, 60syl2anc 408 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐻𝑘) = (ℑ‘(𝐹𝑘)))
115114oveq2d 5783 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (i · (𝐻𝑘)) = (i · (ℑ‘(𝐹𝑘))))
116104, 115eqtrd 2170 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐽𝑘) = (i · (ℑ‘(𝐹𝑘))))
117112, 116oveq12d 5785 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝐺𝑘) + (𝐽𝑘)) = ((ℜ‘(𝐹𝑘)) + (i · (ℑ‘(𝐹𝑘)))))
118110, 117eqtr4d 2173 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = ((𝐺𝑘) + (𝐽𝑘)))
1191, 2, 51, 54, 105, 107, 108, 118climadd 11088 . 2 (𝜑𝐹 ⇝ (( ⇝ ‘𝐺) + (i · ( ⇝ ‘𝐻))))
120 climrel 11042 . . 3 Rel ⇝
121120releldmi 4773 . 2 (𝐹 ⇝ (( ⇝ ‘𝐺) + (i · ( ⇝ ‘𝐻))) → 𝐹 ∈ dom ⇝ )
122119, 121syl 14 1 (𝜑𝐹 ∈ dom ⇝ )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  wral 2414  Vcvv 2681  wss 3066   class class class wbr 3924  cmpt 3984  dom cdm 4534  wf 5114  cfv 5118  (class class class)co 5767  cc 7611  cr 7612  1c1 7614  ici 7615   + caddc 7616   · cmul 7618   < clt 7793  cle 7794  cmin 7926   / cdiv 8425  cn 8713  cuz 9319  +crp 9434  cre 10605  cim 10606  abscabs 10762  cli 11040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-rp 9435  df-seqfrec 10212  df-exp 10286  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-clim 11041
This theorem is referenced by:  climcvg1n  11112
  Copyright terms: Public domain W3C validator