ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcvg1nlem GIF version

Theorem climcvg1nlem 11341
Description: Lemma for climcvg1n 11342. We construct sequences of the real and imaginary parts of each term of 𝐹, show those converge, and use that to show that 𝐹 converges. (Contributed by Jim Kingdon, 24-Aug-2021.)
Hypotheses
Ref Expression
climcvg1n.f (𝜑𝐹:ℕ⟶ℂ)
climcvg1n.c (𝜑𝐶 ∈ ℝ+)
climcvg1n.cau (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛))
climcvg1nlem.g 𝐺 = (𝑥 ∈ ℕ ↦ (ℜ‘(𝐹𝑥)))
climcvg1nlem.h 𝐻 = (𝑥 ∈ ℕ ↦ (ℑ‘(𝐹𝑥)))
climcvg1nlem.j 𝐽 = (𝑥 ∈ ℕ ↦ (i · (𝐻𝑥)))
Assertion
Ref Expression
climcvg1nlem (𝜑𝐹 ∈ dom ⇝ )
Distinct variable groups:   𝐶,𝑘,𝑛   𝑘,𝐹,𝑥   𝑘,𝐺,𝑛   𝑘,𝐻,𝑛,𝑥   𝑘,𝐽   𝜑,𝑘,𝑛,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑛)   𝐺(𝑥)   𝐽(𝑥,𝑛)

Proof of Theorem climcvg1nlem
StepHypRef Expression
1 nnuz 9552 . . 3 ℕ = (ℤ‘1)
2 1zzd 9269 . . 3 (𝜑 → 1 ∈ ℤ)
3 climcvg1n.f . . . . . . . 8 (𝜑𝐹:ℕ⟶ℂ)
43ffvelcdmda 5647 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (𝐹𝑥) ∈ ℂ)
54recld 10931 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → (ℜ‘(𝐹𝑥)) ∈ ℝ)
6 climcvg1nlem.g . . . . . 6 𝐺 = (𝑥 ∈ ℕ ↦ (ℜ‘(𝐹𝑥)))
75, 6fmptd 5666 . . . . 5 (𝜑𝐺:ℕ⟶ℝ)
8 climcvg1n.c . . . . 5 (𝜑𝐶 ∈ ℝ+)
9 climcvg1n.cau . . . . . 6 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛))
10 eluznn 9589 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
1110adantll 476 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
123ad2antrr 488 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐹:ℕ⟶ℂ)
1312, 11ffvelcdmd 5648 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ ℂ)
1413recld 10931 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℜ‘(𝐹𝑘)) ∈ ℝ)
15 fveq2 5511 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
1615fveq2d 5515 . . . . . . . . . . . . . . 15 (𝑥 = 𝑘 → (ℜ‘(𝐹𝑥)) = (ℜ‘(𝐹𝑘)))
1716, 6fvmptg 5588 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ (ℜ‘(𝐹𝑘)) ∈ ℝ) → (𝐺𝑘) = (ℜ‘(𝐹𝑘)))
1811, 14, 17syl2anc 411 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐺𝑘) = (ℜ‘(𝐹𝑘)))
19 simplr 528 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℕ)
2012, 19ffvelcdmd 5648 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑛) ∈ ℂ)
2120recld 10931 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℜ‘(𝐹𝑛)) ∈ ℝ)
22 fveq2 5511 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑛 → (𝐹𝑥) = (𝐹𝑛))
2322fveq2d 5515 . . . . . . . . . . . . . . 15 (𝑥 = 𝑛 → (ℜ‘(𝐹𝑥)) = (ℜ‘(𝐹𝑛)))
2423, 6fvmptg 5588 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ (ℜ‘(𝐹𝑛)) ∈ ℝ) → (𝐺𝑛) = (ℜ‘(𝐹𝑛)))
2519, 21, 24syl2anc 411 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐺𝑛) = (ℜ‘(𝐹𝑛)))
2618, 25oveq12d 5887 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐺𝑘) − (𝐺𝑛)) = ((ℜ‘(𝐹𝑘)) − (ℜ‘(𝐹𝑛))))
2713, 20resubd 10954 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℜ‘((𝐹𝑘) − (𝐹𝑛))) = ((ℜ‘(𝐹𝑘)) − (ℜ‘(𝐹𝑛))))
2826, 27eqtr4d 2213 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐺𝑘) − (𝐺𝑛)) = (ℜ‘((𝐹𝑘) − (𝐹𝑛))))
2928fveq2d 5515 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐺𝑘) − (𝐺𝑛))) = (abs‘(ℜ‘((𝐹𝑘) − (𝐹𝑛)))))
3013, 20subcld 8258 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑘) − (𝐹𝑛)) ∈ ℂ)
31 absrele 11076 . . . . . . . . . . 11 (((𝐹𝑘) − (𝐹𝑛)) ∈ ℂ → (abs‘(ℜ‘((𝐹𝑘) − (𝐹𝑛)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))))
3230, 31syl 14 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘(ℜ‘((𝐹𝑘) − (𝐹𝑛)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))))
3329, 32eqbrtrd 4022 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐺𝑘) − (𝐺𝑛))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))))
3430recld 10931 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℜ‘((𝐹𝑘) − (𝐹𝑛))) ∈ ℝ)
3534recnd 7976 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℜ‘((𝐹𝑘) − (𝐹𝑛))) ∈ ℂ)
3628, 35eqeltrd 2254 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐺𝑘) − (𝐺𝑛)) ∈ ℂ)
3736abscld 11174 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐺𝑘) − (𝐺𝑛))) ∈ ℝ)
3830abscld 11174 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐹𝑘) − (𝐹𝑛))) ∈ ℝ)
398ad2antrr 488 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐶 ∈ ℝ+)
4019nnrpd 9681 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℝ+)
4139, 40rpdivcld 9701 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐶 / 𝑛) ∈ ℝ+)
4241rpred 9683 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐶 / 𝑛) ∈ ℝ)
43 lelttr 8036 . . . . . . . . . 10 (((abs‘((𝐺𝑘) − (𝐺𝑛))) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑛))) ∈ ℝ ∧ (𝐶 / 𝑛) ∈ ℝ) → (((abs‘((𝐺𝑘) − (𝐺𝑛))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛)) → (abs‘((𝐺𝑘) − (𝐺𝑛))) < (𝐶 / 𝑛)))
4437, 38, 42, 43syl3anc 1238 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((abs‘((𝐺𝑘) − (𝐺𝑛))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛)) → (abs‘((𝐺𝑘) − (𝐺𝑛))) < (𝐶 / 𝑛)))
4533, 44mpand 429 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛) → (abs‘((𝐺𝑘) − (𝐺𝑛))) < (𝐶 / 𝑛)))
4645ralimdva 2544 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛) → ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐺𝑘) − (𝐺𝑛))) < (𝐶 / 𝑛)))
4746ralimdva 2544 . . . . . 6 (𝜑 → (∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛) → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐺𝑘) − (𝐺𝑛))) < (𝐶 / 𝑛)))
489, 47mpd 13 . . . . 5 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐺𝑘) − (𝐺𝑛))) < (𝐶 / 𝑛))
497, 8, 48climrecvg1n 11340 . . . 4 (𝜑𝐺 ∈ dom ⇝ )
50 climdm 11287 . . . 4 (𝐺 ∈ dom ⇝ ↔ 𝐺 ⇝ ( ⇝ ‘𝐺))
5149, 50sylib 122 . . 3 (𝜑𝐺 ⇝ ( ⇝ ‘𝐺))
52 nnex 8914 . . . 4 ℕ ∈ V
53 fex 5741 . . . 4 ((𝐹:ℕ⟶ℂ ∧ ℕ ∈ V) → 𝐹 ∈ V)
543, 52, 53sylancl 413 . . 3 (𝜑𝐹 ∈ V)
554imcld 10932 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (ℑ‘(𝐹𝑥)) ∈ ℝ)
56 climcvg1nlem.h . . . . . . 7 𝐻 = (𝑥 ∈ ℕ ↦ (ℑ‘(𝐹𝑥)))
5755, 56fmptd 5666 . . . . . 6 (𝜑𝐻:ℕ⟶ℝ)
5813imcld 10932 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℑ‘(𝐹𝑘)) ∈ ℝ)
5915fveq2d 5515 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → (ℑ‘(𝐹𝑥)) = (ℑ‘(𝐹𝑘)))
6059, 56fvmptg 5588 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ (ℑ‘(𝐹𝑘)) ∈ ℝ) → (𝐻𝑘) = (ℑ‘(𝐹𝑘)))
6111, 58, 60syl2anc 411 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐻𝑘) = (ℑ‘(𝐹𝑘)))
6220imcld 10932 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℑ‘(𝐹𝑛)) ∈ ℝ)
6322fveq2d 5515 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑛 → (ℑ‘(𝐹𝑥)) = (ℑ‘(𝐹𝑛)))
6463, 56fvmptg 5588 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ (ℑ‘(𝐹𝑛)) ∈ ℝ) → (𝐻𝑛) = (ℑ‘(𝐹𝑛)))
6519, 62, 64syl2anc 411 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐻𝑛) = (ℑ‘(𝐹𝑛)))
6661, 65oveq12d 5887 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐻𝑘) − (𝐻𝑛)) = ((ℑ‘(𝐹𝑘)) − (ℑ‘(𝐹𝑛))))
6713, 20imsubd 10955 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℑ‘((𝐹𝑘) − (𝐹𝑛))) = ((ℑ‘(𝐹𝑘)) − (ℑ‘(𝐹𝑛))))
6866, 67eqtr4d 2213 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐻𝑘) − (𝐻𝑛)) = (ℑ‘((𝐹𝑘) − (𝐹𝑛))))
6968fveq2d 5515 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐻𝑘) − (𝐻𝑛))) = (abs‘(ℑ‘((𝐹𝑘) − (𝐹𝑛)))))
70 absimle 11077 . . . . . . . . . . . 12 (((𝐹𝑘) − (𝐹𝑛)) ∈ ℂ → (abs‘(ℑ‘((𝐹𝑘) − (𝐹𝑛)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))))
7130, 70syl 14 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘(ℑ‘((𝐹𝑘) − (𝐹𝑛)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))))
7269, 71eqbrtrd 4022 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐻𝑘) − (𝐻𝑛))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))))
7361, 58eqeltrd 2254 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐻𝑘) ∈ ℝ)
7465, 62eqeltrd 2254 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐻𝑛) ∈ ℝ)
7573, 74resubcld 8328 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐻𝑘) − (𝐻𝑛)) ∈ ℝ)
7675recnd 7976 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐻𝑘) − (𝐻𝑛)) ∈ ℂ)
7776abscld 11174 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐻𝑘) − (𝐻𝑛))) ∈ ℝ)
78 lelttr 8036 . . . . . . . . . . 11 (((abs‘((𝐻𝑘) − (𝐻𝑛))) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑛))) ∈ ℝ ∧ (𝐶 / 𝑛) ∈ ℝ) → (((abs‘((𝐻𝑘) − (𝐻𝑛))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛)) → (abs‘((𝐻𝑘) − (𝐻𝑛))) < (𝐶 / 𝑛)))
7977, 38, 42, 78syl3anc 1238 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((abs‘((𝐻𝑘) − (𝐻𝑛))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛)) → (abs‘((𝐻𝑘) − (𝐻𝑛))) < (𝐶 / 𝑛)))
8072, 79mpand 429 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛) → (abs‘((𝐻𝑘) − (𝐻𝑛))) < (𝐶 / 𝑛)))
8180ralimdva 2544 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛) → ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐻𝑘) − (𝐻𝑛))) < (𝐶 / 𝑛)))
8281ralimdva 2544 . . . . . . 7 (𝜑 → (∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛) → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐻𝑘) − (𝐻𝑛))) < (𝐶 / 𝑛)))
839, 82mpd 13 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐻𝑘) − (𝐻𝑛))) < (𝐶 / 𝑛))
8457, 8, 83climrecvg1n 11340 . . . . 5 (𝜑𝐻 ∈ dom ⇝ )
85 climdm 11287 . . . . 5 (𝐻 ∈ dom ⇝ ↔ 𝐻 ⇝ ( ⇝ ‘𝐻))
8684, 85sylib 122 . . . 4 (𝜑𝐻 ⇝ ( ⇝ ‘𝐻))
87 ax-icn 7897 . . . . 5 i ∈ ℂ
8887a1i 9 . . . 4 (𝜑 → i ∈ ℂ)
89 climcvg1nlem.j . . . . . 6 𝐽 = (𝑥 ∈ ℕ ↦ (i · (𝐻𝑥)))
9052mptex 5738 . . . . . 6 (𝑥 ∈ ℕ ↦ (i · (𝐻𝑥))) ∈ V
9189, 90eqeltri 2250 . . . . 5 𝐽 ∈ V
9291a1i 9 . . . 4 (𝜑𝐽 ∈ V)
93 ax-resscn 7894 . . . . . . 7 ℝ ⊆ ℂ
9493a1i 9 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
9557, 94fssd 5374 . . . . 5 (𝜑𝐻:ℕ⟶ℂ)
9695ffvelcdmda 5647 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐻𝑘) ∈ ℂ)
9789a1i 9 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝐽 = (𝑥 ∈ ℕ ↦ (i · (𝐻𝑥))))
98 fveq2 5511 . . . . . . 7 (𝑥 = 𝑘 → (𝐻𝑥) = (𝐻𝑘))
9998oveq2d 5885 . . . . . 6 (𝑥 = 𝑘 → (i · (𝐻𝑥)) = (i · (𝐻𝑘)))
10099adantl 277 . . . . 5 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 = 𝑘) → (i · (𝐻𝑥)) = (i · (𝐻𝑘)))
101 simpr 110 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
10287a1i 9 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → i ∈ ℂ)
103102, 96mulcld 7968 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (i · (𝐻𝑘)) ∈ ℂ)
10497, 100, 101, 103fvmptd 5593 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐽𝑘) = (i · (𝐻𝑘)))
1051, 2, 86, 88, 92, 96, 104climmulc2 11323 . . 3 (𝜑𝐽 ⇝ (i · ( ⇝ ‘𝐻)))
1067ffvelcdmda 5647 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
107106recnd 7976 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℂ)
108104, 103eqeltrd 2254 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝐽𝑘) ∈ ℂ)
1093ffvelcdmda 5647 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
110109replimd 10934 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = ((ℜ‘(𝐹𝑘)) + (i · (ℑ‘(𝐹𝑘)))))
111109recld 10931 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (ℜ‘(𝐹𝑘)) ∈ ℝ)
112101, 111, 17syl2anc 411 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) = (ℜ‘(𝐹𝑘)))
113109imcld 10932 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (ℑ‘(𝐹𝑘)) ∈ ℝ)
114101, 113, 60syl2anc 411 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐻𝑘) = (ℑ‘(𝐹𝑘)))
115114oveq2d 5885 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (i · (𝐻𝑘)) = (i · (ℑ‘(𝐹𝑘))))
116104, 115eqtrd 2210 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐽𝑘) = (i · (ℑ‘(𝐹𝑘))))
117112, 116oveq12d 5887 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝐺𝑘) + (𝐽𝑘)) = ((ℜ‘(𝐹𝑘)) + (i · (ℑ‘(𝐹𝑘)))))
118110, 117eqtr4d 2213 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = ((𝐺𝑘) + (𝐽𝑘)))
1191, 2, 51, 54, 105, 107, 108, 118climadd 11318 . 2 (𝜑𝐹 ⇝ (( ⇝ ‘𝐺) + (i · ( ⇝ ‘𝐻))))
120 climrel 11272 . . 3 Rel ⇝
121120releldmi 4862 . 2 (𝐹 ⇝ (( ⇝ ‘𝐺) + (i · ( ⇝ ‘𝐻))) → 𝐹 ∈ dom ⇝ )
122119, 121syl 14 1 (𝜑𝐹 ∈ dom ⇝ )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  wral 2455  Vcvv 2737  wss 3129   class class class wbr 4000  cmpt 4061  dom cdm 4623  wf 5208  cfv 5212  (class class class)co 5869  cc 7800  cr 7801  1c1 7803  ici 7804   + caddc 7805   · cmul 7807   < clt 7982  cle 7983  cmin 8118   / cdiv 8618  cn 8908  cuz 9517  +crp 9640  cre 10833  cim 10834  abscabs 10990  cli 11270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-rp 9641  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271
This theorem is referenced by:  climcvg1n  11342
  Copyright terms: Public domain W3C validator