ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucexg GIF version

Theorem sucexg 4534
Description: The successor of a set is a set (generalization). (Contributed by NM, 5-Jun-1994.)
Assertion
Ref Expression
sucexg (𝐴𝑉 → suc 𝐴 ∈ V)

Proof of Theorem sucexg
StepHypRef Expression
1 elex 2774 . 2 (𝐴𝑉𝐴 ∈ V)
2 sucexb 4533 . 2 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
31, 2sylib 122 1 (𝐴𝑉 → suc 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  Vcvv 2763  suc csuc 4400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-suc 4406
This theorem is referenced by:  sucex  4535  onsuc  4537  peano2  4631  sucinc2  6504  oav2  6521
  Copyright terms: Public domain W3C validator