ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucexg GIF version

Theorem sucexg 4554
Description: The successor of a set is a set (generalization). (Contributed by NM, 5-Jun-1994.)
Assertion
Ref Expression
sucexg (𝐴𝑉 → suc 𝐴 ∈ V)

Proof of Theorem sucexg
StepHypRef Expression
1 elex 2785 . 2 (𝐴𝑉𝐴 ∈ V)
2 sucexb 4553 . 2 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
31, 2sylib 122 1 (𝐴𝑉 → suc 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2177  Vcvv 2773  suc csuc 4420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-uni 3857  df-suc 4426
This theorem is referenced by:  sucex  4555  onsuc  4557  peano2  4651  sucinc2  6545  oav2  6562
  Copyright terms: Public domain W3C validator