ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unex GIF version

Theorem unex 4477
Description: The union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 1-Jul-1994.)
Hypotheses
Ref Expression
unex.1 𝐴 ∈ V
unex.2 𝐵 ∈ V
Assertion
Ref Expression
unex (𝐴𝐵) ∈ V

Proof of Theorem unex
StepHypRef Expression
1 unex.1 . . 3 𝐴 ∈ V
2 unex.2 . . 3 𝐵 ∈ V
31, 2unipr 3854 . 2 {𝐴, 𝐵} = (𝐴𝐵)
4 prexg 4245 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V)
51, 2, 4mp2an 426 . . 3 {𝐴, 𝐵} ∈ V
65uniex 4473 . 2 {𝐴, 𝐵} ∈ V
73, 6eqeltrri 2270 1 (𝐴𝐵) ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2167  Vcvv 2763  cun 3155  {cpr 3624   cuni 3840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-sn 3629  df-pr 3630  df-uni 3841
This theorem is referenced by:  unexb  4478  rdg0  6454  unen  6884  findcard2  6959  findcard2s  6960  ac6sfi  6968  sbthlemi10  7041  finomni  7215  exmidfodomrlemim  7280  nn0ex  9272  xrex  9948  xnn0nnen  10546  nninfct  12233  exmidunben  12668  strleun  12807  fngsum  13090  fnpsr  14297
  Copyright terms: Public domain W3C validator