ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unex GIF version

Theorem unex 4532
Description: The union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 1-Jul-1994.)
Hypotheses
Ref Expression
unex.1 𝐴 ∈ V
unex.2 𝐵 ∈ V
Assertion
Ref Expression
unex (𝐴𝐵) ∈ V

Proof of Theorem unex
StepHypRef Expression
1 unex.1 . . 3 𝐴 ∈ V
2 unex.2 . . 3 𝐵 ∈ V
31, 2unipr 3902 . 2 {𝐴, 𝐵} = (𝐴𝐵)
4 prexg 4295 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V)
51, 2, 4mp2an 426 . . 3 {𝐴, 𝐵} ∈ V
65uniex 4528 . 2 {𝐴, 𝐵} ∈ V
73, 6eqeltrri 2303 1 (𝐴𝐵) ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2200  Vcvv 2799  cun 3195  {cpr 3667   cuni 3888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-uni 3889
This theorem is referenced by:  unexb  4533  rdg0  6539  unen  6977  findcard2  7059  findcard2s  7060  ac6sfi  7068  sbthlemi10  7141  finomni  7315  exmidfodomrlemim  7387  nn0ex  9383  xrex  10060  xnn0nnen  10667  nninfct  12570  exmidunben  13005  strleun  13145  fngsum  13429  fnpsr  14639
  Copyright terms: Public domain W3C validator