ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unex GIF version

Theorem unex 4426
Description: The union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 1-Jul-1994.)
Hypotheses
Ref Expression
unex.1 𝐴 ∈ V
unex.2 𝐵 ∈ V
Assertion
Ref Expression
unex (𝐴𝐵) ∈ V

Proof of Theorem unex
StepHypRef Expression
1 unex.1 . . 3 𝐴 ∈ V
2 unex.2 . . 3 𝐵 ∈ V
31, 2unipr 3810 . 2 {𝐴, 𝐵} = (𝐴𝐵)
4 prexg 4196 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V)
51, 2, 4mp2an 424 . . 3 {𝐴, 𝐵} ∈ V
65uniex 4422 . 2 {𝐴, 𝐵} ∈ V
73, 6eqeltrri 2244 1 (𝐴𝐵) ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2141  Vcvv 2730  cun 3119  {cpr 3584   cuni 3796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-uni 3797
This theorem is referenced by:  unexb  4427  rdg0  6366  unen  6794  findcard2  6867  findcard2s  6868  ac6sfi  6876  sbthlemi10  6943  finomni  7116  exmidfodomrlemim  7178  nn0ex  9141  xrex  9813  exmidunben  12381  strleun  12507
  Copyright terms: Public domain W3C validator