| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unex | GIF version | ||
| Description: The union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 1-Jul-1994.) |
| Ref | Expression |
|---|---|
| unex.1 | ⊢ 𝐴 ∈ V |
| unex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| unex | ⊢ (𝐴 ∪ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unex.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | unex.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | unipr 3854 | . 2 ⊢ ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵) |
| 4 | prexg 4245 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V) | |
| 5 | 1, 2, 4 | mp2an 426 | . . 3 ⊢ {𝐴, 𝐵} ∈ V |
| 6 | 5 | uniex 4473 | . 2 ⊢ ∪ {𝐴, 𝐵} ∈ V |
| 7 | 3, 6 | eqeltrri 2270 | 1 ⊢ (𝐴 ∪ 𝐵) ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 ∪ cun 3155 {cpr 3624 ∪ cuni 3840 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-uni 3841 |
| This theorem is referenced by: unexb 4478 rdg0 6454 unen 6884 findcard2 6959 findcard2s 6960 ac6sfi 6968 sbthlemi10 7041 finomni 7215 exmidfodomrlemim 7280 nn0ex 9272 xrex 9948 xnn0nnen 10546 nninfct 12233 exmidunben 12668 strleun 12807 fngsum 13090 fnpsr 14297 |
| Copyright terms: Public domain | W3C validator |