ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unex GIF version

Theorem unex 4493
Description: The union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 1-Jul-1994.)
Hypotheses
Ref Expression
unex.1 𝐴 ∈ V
unex.2 𝐵 ∈ V
Assertion
Ref Expression
unex (𝐴𝐵) ∈ V

Proof of Theorem unex
StepHypRef Expression
1 unex.1 . . 3 𝐴 ∈ V
2 unex.2 . . 3 𝐵 ∈ V
31, 2unipr 3867 . 2 {𝐴, 𝐵} = (𝐴𝐵)
4 prexg 4260 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V)
51, 2, 4mp2an 426 . . 3 {𝐴, 𝐵} ∈ V
65uniex 4489 . 2 {𝐴, 𝐵} ∈ V
73, 6eqeltrri 2280 1 (𝐴𝐵) ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2177  Vcvv 2773  cun 3166  {cpr 3636   cuni 3853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pr 4258  ax-un 4485
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-v 2775  df-un 3172  df-sn 3641  df-pr 3642  df-uni 3854
This theorem is referenced by:  unexb  4494  rdg0  6483  unen  6919  findcard2  6998  findcard2s  6999  ac6sfi  7007  sbthlemi10  7080  finomni  7254  exmidfodomrlemim  7322  nn0ex  9314  xrex  9991  xnn0nnen  10595  nninfct  12412  exmidunben  12847  strleun  12986  fngsum  13270  fnpsr  14479
  Copyright terms: Public domain W3C validator