![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unex | GIF version |
Description: The union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 1-Jul-1994.) |
Ref | Expression |
---|---|
unex.1 | ⊢ 𝐴 ∈ V |
unex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
unex | ⊢ (𝐴 ∪ 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unex.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | unex.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | unipr 3849 | . 2 ⊢ ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵) |
4 | prexg 4240 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V) | |
5 | 1, 2, 4 | mp2an 426 | . . 3 ⊢ {𝐴, 𝐵} ∈ V |
6 | 5 | uniex 4468 | . 2 ⊢ ∪ {𝐴, 𝐵} ∈ V |
7 | 3, 6 | eqeltrri 2267 | 1 ⊢ (𝐴 ∪ 𝐵) ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 Vcvv 2760 ∪ cun 3151 {cpr 3619 ∪ cuni 3835 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-uni 3836 |
This theorem is referenced by: unexb 4473 rdg0 6440 unen 6870 findcard2 6945 findcard2s 6946 ac6sfi 6954 sbthlemi10 7025 finomni 7199 exmidfodomrlemim 7261 nn0ex 9246 xrex 9922 xnn0nnen 10508 nninfct 12178 exmidunben 12583 strleun 12722 fngsum 12971 fnpsr 14153 |
Copyright terms: Public domain | W3C validator |