| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unex | GIF version | ||
| Description: The union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 1-Jul-1994.) |
| Ref | Expression |
|---|---|
| unex.1 | ⊢ 𝐴 ∈ V |
| unex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| unex | ⊢ (𝐴 ∪ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unex.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | unex.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | unipr 3901 | . 2 ⊢ ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵) |
| 4 | prexg 4294 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V) | |
| 5 | 1, 2, 4 | mp2an 426 | . . 3 ⊢ {𝐴, 𝐵} ∈ V |
| 6 | 5 | uniex 4525 | . 2 ⊢ ∪ {𝐴, 𝐵} ∈ V |
| 7 | 3, 6 | eqeltrri 2303 | 1 ⊢ (𝐴 ∪ 𝐵) ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 Vcvv 2799 ∪ cun 3195 {cpr 3667 ∪ cuni 3887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pr 4292 ax-un 4521 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-uni 3888 |
| This theorem is referenced by: unexb 4530 rdg0 6523 unen 6959 findcard2 7039 findcard2s 7040 ac6sfi 7048 sbthlemi10 7121 finomni 7295 exmidfodomrlemim 7367 nn0ex 9363 xrex 10040 xnn0nnen 10646 nninfct 12548 exmidunben 12983 strleun 13123 fngsum 13407 fnpsr 14616 |
| Copyright terms: Public domain | W3C validator |