ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unexg GIF version

Theorem unexg 4458
Description: A union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 18-Sep-2006.)
Assertion
Ref Expression
unexg ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)

Proof of Theorem unexg
StepHypRef Expression
1 elex 2763 . 2 (𝐴𝑉𝐴 ∈ V)
2 elex 2763 . 2 (𝐵𝑊𝐵 ∈ V)
3 unexb 4457 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)
43biimpi 120 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
51, 2, 4syl2an 289 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2160  Vcvv 2752  cun 3142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pr 4224  ax-un 4448
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-sn 3613  df-pr 3614  df-uni 3825
This theorem is referenced by:  tpexg  4459  eldifpw  4492  ifelpwung  4496  xpexg  4755  tposexg  6277  tfrlemisucaccv  6344  tfrlemibxssdm  6346  tfrlemibfn  6347  tfr1onlemsucaccv  6360  tfr1onlembxssdm  6362  tfr1onlembfn  6363  tfrcllemsucaccv  6373  tfrcllembxssdm  6375  tfrcllembfn  6376  rdgtfr  6393  rdgruledefgg  6394  rdgivallem  6400  djuex  7060  zfz1isolem1  10838  ennnfonelemp1  12425  setsvalg  12510  setsex  12512  setsslid  12531  strleund  12581  prdsex  12740
  Copyright terms: Public domain W3C validator