| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unexg | GIF version | ||
| Description: A union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 18-Sep-2006.) |
| Ref | Expression |
|---|---|
| unexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | elex 2774 | . 2 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
| 3 | unexb 4478 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ∪ 𝐵) ∈ V) | |
| 4 | 3 | biimpi 120 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∪ 𝐵) ∈ V) |
| 5 | 1, 2, 4 | syl2an 289 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 Vcvv 2763 ∪ cun 3155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-uni 3841 |
| This theorem is referenced by: tpexg 4480 eldifpw 4513 ifelpwung 4517 xpexg 4778 tposexg 6325 tfrlemisucaccv 6392 tfrlemibxssdm 6394 tfrlemibfn 6395 tfr1onlemsucaccv 6408 tfr1onlembxssdm 6410 tfr1onlembfn 6411 tfrcllemsucaccv 6421 tfrcllembxssdm 6423 tfrcllembfn 6424 rdgtfr 6441 rdgruledefgg 6442 rdgivallem 6448 djuex 7118 zfz1isolem1 10949 ennnfonelemp1 12648 setsvalg 12733 setsex 12735 setsslid 12754 strleund 12806 prdsex 12971 prdsval 12975 igsumvalx 13091 psrval 14296 plyval 15052 elply2 15055 plyss 15058 plyco 15079 plycj 15081 |
| Copyright terms: Public domain | W3C validator |