| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > unexg | GIF version | ||
| Description: A union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 18-Sep-2006.) | 
| Ref | Expression | 
|---|---|
| unexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elex 2774 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | elex 2774 | . 2 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
| 3 | unexb 4477 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ∪ 𝐵) ∈ V) | |
| 4 | 3 | biimpi 120 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∪ 𝐵) ∈ V) | 
| 5 | 1, 2, 4 | syl2an 289 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 Vcvv 2763 ∪ cun 3155 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-uni 3840 | 
| This theorem is referenced by: tpexg 4479 eldifpw 4512 ifelpwung 4516 xpexg 4777 tposexg 6316 tfrlemisucaccv 6383 tfrlemibxssdm 6385 tfrlemibfn 6386 tfr1onlemsucaccv 6399 tfr1onlembxssdm 6401 tfr1onlembfn 6402 tfrcllemsucaccv 6412 tfrcllembxssdm 6414 tfrcllembfn 6415 rdgtfr 6432 rdgruledefgg 6433 rdgivallem 6439 djuex 7109 zfz1isolem1 10932 ennnfonelemp1 12623 setsvalg 12708 setsex 12710 setsslid 12729 strleund 12781 prdsex 12940 igsumvalx 13032 psrval 14220 plyval 14968 elply2 14971 plyss 14974 plyco 14995 plycj 14997 | 
| Copyright terms: Public domain | W3C validator |