| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unexg | GIF version | ||
| Description: A union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 18-Sep-2006.) |
| Ref | Expression |
|---|---|
| unexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | elex 2811 | . 2 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
| 3 | unexb 4533 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ∪ 𝐵) ∈ V) | |
| 4 | 3 | biimpi 120 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∪ 𝐵) ∈ V) |
| 5 | 1, 2, 4 | syl2an 289 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 Vcvv 2799 ∪ cun 3195 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-uni 3889 |
| This theorem is referenced by: tpexg 4535 eldifpw 4568 ifelpwung 4572 xpexg 4833 tposexg 6410 tfrlemisucaccv 6477 tfrlemibxssdm 6479 tfrlemibfn 6480 tfr1onlemsucaccv 6493 tfr1onlembxssdm 6495 tfr1onlembfn 6496 tfrcllemsucaccv 6506 tfrcllembxssdm 6508 tfrcllembfn 6509 rdgtfr 6526 rdgruledefgg 6527 rdgivallem 6533 djuex 7218 zfz1isolem1 11070 ennnfonelemp1 12985 setsvalg 13070 setsex 13072 setsslid 13091 strleund 13144 prdsex 13310 prdsval 13314 igsumvalx 13430 psrval 14638 plyval 15414 elply2 15417 plyss 15420 plyco 15441 plycj 15443 uhgrunop 15895 upgrunop 15933 umgrunop 15935 |
| Copyright terms: Public domain | W3C validator |