ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unexg GIF version

Theorem unexg 4421
Description: A union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 18-Sep-2006.)
Assertion
Ref Expression
unexg ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)

Proof of Theorem unexg
StepHypRef Expression
1 elex 2737 . 2 (𝐴𝑉𝐴 ∈ V)
2 elex 2737 . 2 (𝐵𝑊𝐵 ∈ V)
3 unexb 4420 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)
43biimpi 119 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
51, 2, 4syl2an 287 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 2136  Vcvv 2726  cun 3114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-uni 3790
This theorem is referenced by:  tpexg  4422  eldifpw  4455  ifelpwung  4459  xpexg  4718  tposexg  6226  tfrlemisucaccv  6293  tfrlemibxssdm  6295  tfrlemibfn  6296  tfr1onlemsucaccv  6309  tfr1onlembxssdm  6311  tfr1onlembfn  6312  tfrcllemsucaccv  6322  tfrcllembxssdm  6324  tfrcllembfn  6325  rdgtfr  6342  rdgruledefgg  6343  rdgivallem  6349  djuex  7008  zfz1isolem1  10753  ennnfonelemp1  12339  setsvalg  12424  setsex  12426  setsslid  12444  strleund  12483
  Copyright terms: Public domain W3C validator