| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unexg | GIF version | ||
| Description: A union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 18-Sep-2006.) |
| Ref | Expression |
|---|---|
| unexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | elex 2811 | . 2 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
| 3 | unexb 4530 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ∪ 𝐵) ∈ V) | |
| 4 | 3 | biimpi 120 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∪ 𝐵) ∈ V) |
| 5 | 1, 2, 4 | syl2an 289 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 Vcvv 2799 ∪ cun 3195 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pr 4292 ax-un 4521 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-uni 3888 |
| This theorem is referenced by: tpexg 4532 eldifpw 4565 ifelpwung 4569 xpexg 4830 tposexg 6394 tfrlemisucaccv 6461 tfrlemibxssdm 6463 tfrlemibfn 6464 tfr1onlemsucaccv 6477 tfr1onlembxssdm 6479 tfr1onlembfn 6480 tfrcllemsucaccv 6490 tfrcllembxssdm 6492 tfrcllembfn 6493 rdgtfr 6510 rdgruledefgg 6511 rdgivallem 6517 djuex 7198 zfz1isolem1 11049 ennnfonelemp1 12963 setsvalg 13048 setsex 13050 setsslid 13069 strleund 13122 prdsex 13288 prdsval 13292 igsumvalx 13408 psrval 14615 plyval 15391 elply2 15394 plyss 15397 plyco 15418 plycj 15420 uhgrunop 15872 upgrunop 15910 umgrunop 15912 |
| Copyright terms: Public domain | W3C validator |