ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rntpos GIF version

Theorem rntpos 6310
Description: The range of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
rntpos (Rel dom 𝐹 → ran tpos 𝐹 = ran 𝐹)

Proof of Theorem rntpos
Dummy variables 𝑥 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2763 . . . . 5 𝑥 ∈ V
21elrn 4905 . . . 4 (𝑥 ∈ ran tpos 𝐹 ↔ ∃𝑦 𝑦tpos 𝐹𝑥)
3 vex 2763 . . . . . . . . 9 𝑦 ∈ V
43, 1breldm 4866 . . . . . . . 8 (𝑦tpos 𝐹𝑥𝑦 ∈ dom tpos 𝐹)
5 dmtpos 6309 . . . . . . . . 9 (Rel dom 𝐹 → dom tpos 𝐹 = dom 𝐹)
65eleq2d 2263 . . . . . . . 8 (Rel dom 𝐹 → (𝑦 ∈ dom tpos 𝐹𝑦dom 𝐹))
74, 6imbitrid 154 . . . . . . 7 (Rel dom 𝐹 → (𝑦tpos 𝐹𝑥𝑦dom 𝐹))
8 relcnv 5043 . . . . . . . 8 Rel dom 𝐹
9 elrel 4761 . . . . . . . 8 ((Rel dom 𝐹𝑦dom 𝐹) → ∃𝑤𝑧 𝑦 = ⟨𝑤, 𝑧⟩)
108, 9mpan 424 . . . . . . 7 (𝑦dom 𝐹 → ∃𝑤𝑧 𝑦 = ⟨𝑤, 𝑧⟩)
117, 10syl6 33 . . . . . 6 (Rel dom 𝐹 → (𝑦tpos 𝐹𝑥 → ∃𝑤𝑧 𝑦 = ⟨𝑤, 𝑧⟩))
12 breq1 4032 . . . . . . . . 9 (𝑦 = ⟨𝑤, 𝑧⟩ → (𝑦tpos 𝐹𝑥 ↔ ⟨𝑤, 𝑧⟩tpos 𝐹𝑥))
13 vex 2763 . . . . . . . . . 10 𝑤 ∈ V
14 vex 2763 . . . . . . . . . 10 𝑧 ∈ V
15 brtposg 6307 . . . . . . . . . 10 ((𝑤 ∈ V ∧ 𝑧 ∈ V ∧ 𝑥 ∈ V) → (⟨𝑤, 𝑧⟩tpos 𝐹𝑥 ↔ ⟨𝑧, 𝑤𝐹𝑥))
1613, 14, 1, 15mp3an 1348 . . . . . . . . 9 (⟨𝑤, 𝑧⟩tpos 𝐹𝑥 ↔ ⟨𝑧, 𝑤𝐹𝑥)
1712, 16bitrdi 196 . . . . . . . 8 (𝑦 = ⟨𝑤, 𝑧⟩ → (𝑦tpos 𝐹𝑥 ↔ ⟨𝑧, 𝑤𝐹𝑥))
1814, 13opex 4258 . . . . . . . . 9 𝑧, 𝑤⟩ ∈ V
1918, 1brelrn 4895 . . . . . . . 8 (⟨𝑧, 𝑤𝐹𝑥𝑥 ∈ ran 𝐹)
2017, 19biimtrdi 163 . . . . . . 7 (𝑦 = ⟨𝑤, 𝑧⟩ → (𝑦tpos 𝐹𝑥𝑥 ∈ ran 𝐹))
2120exlimivv 1908 . . . . . 6 (∃𝑤𝑧 𝑦 = ⟨𝑤, 𝑧⟩ → (𝑦tpos 𝐹𝑥𝑥 ∈ ran 𝐹))
2211, 21syli 37 . . . . 5 (Rel dom 𝐹 → (𝑦tpos 𝐹𝑥𝑥 ∈ ran 𝐹))
2322exlimdv 1830 . . . 4 (Rel dom 𝐹 → (∃𝑦 𝑦tpos 𝐹𝑥𝑥 ∈ ran 𝐹))
242, 23biimtrid 152 . . 3 (Rel dom 𝐹 → (𝑥 ∈ ran tpos 𝐹𝑥 ∈ ran 𝐹))
251elrn 4905 . . . 4 (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 𝑦𝐹𝑥)
263, 1breldm 4866 . . . . . . 7 (𝑦𝐹𝑥𝑦 ∈ dom 𝐹)
27 elrel 4761 . . . . . . . 8 ((Rel dom 𝐹𝑦 ∈ dom 𝐹) → ∃𝑧𝑤 𝑦 = ⟨𝑧, 𝑤⟩)
2827ex 115 . . . . . . 7 (Rel dom 𝐹 → (𝑦 ∈ dom 𝐹 → ∃𝑧𝑤 𝑦 = ⟨𝑧, 𝑤⟩))
2926, 28syl5 32 . . . . . 6 (Rel dom 𝐹 → (𝑦𝐹𝑥 → ∃𝑧𝑤 𝑦 = ⟨𝑧, 𝑤⟩))
30 breq1 4032 . . . . . . . . 9 (𝑦 = ⟨𝑧, 𝑤⟩ → (𝑦𝐹𝑥 ↔ ⟨𝑧, 𝑤𝐹𝑥))
3130, 16bitr4di 198 . . . . . . . 8 (𝑦 = ⟨𝑧, 𝑤⟩ → (𝑦𝐹𝑥 ↔ ⟨𝑤, 𝑧⟩tpos 𝐹𝑥))
3213, 14opex 4258 . . . . . . . . 9 𝑤, 𝑧⟩ ∈ V
3332, 1brelrn 4895 . . . . . . . 8 (⟨𝑤, 𝑧⟩tpos 𝐹𝑥𝑥 ∈ ran tpos 𝐹)
3431, 33biimtrdi 163 . . . . . . 7 (𝑦 = ⟨𝑧, 𝑤⟩ → (𝑦𝐹𝑥𝑥 ∈ ran tpos 𝐹))
3534exlimivv 1908 . . . . . 6 (∃𝑧𝑤 𝑦 = ⟨𝑧, 𝑤⟩ → (𝑦𝐹𝑥𝑥 ∈ ran tpos 𝐹))
3629, 35syli 37 . . . . 5 (Rel dom 𝐹 → (𝑦𝐹𝑥𝑥 ∈ ran tpos 𝐹))
3736exlimdv 1830 . . . 4 (Rel dom 𝐹 → (∃𝑦 𝑦𝐹𝑥𝑥 ∈ ran tpos 𝐹))
3825, 37biimtrid 152 . . 3 (Rel dom 𝐹 → (𝑥 ∈ ran 𝐹𝑥 ∈ ran tpos 𝐹))
3924, 38impbid 129 . 2 (Rel dom 𝐹 → (𝑥 ∈ ran tpos 𝐹𝑥 ∈ ran 𝐹))
4039eqrdv 2191 1 (Rel dom 𝐹 → ran tpos 𝐹 = ran 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wex 1503  wcel 2164  Vcvv 2760  cop 3621   class class class wbr 4029  ccnv 4658  dom cdm 4659  ran crn 4660  Rel wrel 4664  tpos ctpos 6297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-tpos 6298
This theorem is referenced by:  tposfo2  6320
  Copyright terms: Public domain W3C validator