| Step | Hyp | Ref
| Expression |
| 1 | | vex 2766 |
. . . . 5
⊢ 𝑥 ∈ V |
| 2 | 1 | elrn 4909 |
. . . 4
⊢ (𝑥 ∈ ran tpos 𝐹 ↔ ∃𝑦 𝑦tpos 𝐹𝑥) |
| 3 | | vex 2766 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
| 4 | 3, 1 | breldm 4870 |
. . . . . . . 8
⊢ (𝑦tpos 𝐹𝑥 → 𝑦 ∈ dom tpos 𝐹) |
| 5 | | dmtpos 6314 |
. . . . . . . . 9
⊢ (Rel dom
𝐹 → dom tpos 𝐹 = ◡dom 𝐹) |
| 6 | 5 | eleq2d 2266 |
. . . . . . . 8
⊢ (Rel dom
𝐹 → (𝑦 ∈ dom tpos 𝐹 ↔ 𝑦 ∈ ◡dom 𝐹)) |
| 7 | 4, 6 | imbitrid 154 |
. . . . . . 7
⊢ (Rel dom
𝐹 → (𝑦tpos 𝐹𝑥 → 𝑦 ∈ ◡dom 𝐹)) |
| 8 | | relcnv 5047 |
. . . . . . . 8
⊢ Rel ◡dom 𝐹 |
| 9 | | elrel 4765 |
. . . . . . . 8
⊢ ((Rel
◡dom 𝐹 ∧ 𝑦 ∈ ◡dom 𝐹) → ∃𝑤∃𝑧 𝑦 = 〈𝑤, 𝑧〉) |
| 10 | 8, 9 | mpan 424 |
. . . . . . 7
⊢ (𝑦 ∈ ◡dom 𝐹 → ∃𝑤∃𝑧 𝑦 = 〈𝑤, 𝑧〉) |
| 11 | 7, 10 | syl6 33 |
. . . . . 6
⊢ (Rel dom
𝐹 → (𝑦tpos 𝐹𝑥 → ∃𝑤∃𝑧 𝑦 = 〈𝑤, 𝑧〉)) |
| 12 | | breq1 4036 |
. . . . . . . . 9
⊢ (𝑦 = 〈𝑤, 𝑧〉 → (𝑦tpos 𝐹𝑥 ↔ 〈𝑤, 𝑧〉tpos 𝐹𝑥)) |
| 13 | | vex 2766 |
. . . . . . . . . 10
⊢ 𝑤 ∈ V |
| 14 | | vex 2766 |
. . . . . . . . . 10
⊢ 𝑧 ∈ V |
| 15 | | brtposg 6312 |
. . . . . . . . . 10
⊢ ((𝑤 ∈ V ∧ 𝑧 ∈ V ∧ 𝑥 ∈ V) → (〈𝑤, 𝑧〉tpos 𝐹𝑥 ↔ 〈𝑧, 𝑤〉𝐹𝑥)) |
| 16 | 13, 14, 1, 15 | mp3an 1348 |
. . . . . . . . 9
⊢
(〈𝑤, 𝑧〉tpos 𝐹𝑥 ↔ 〈𝑧, 𝑤〉𝐹𝑥) |
| 17 | 12, 16 | bitrdi 196 |
. . . . . . . 8
⊢ (𝑦 = 〈𝑤, 𝑧〉 → (𝑦tpos 𝐹𝑥 ↔ 〈𝑧, 𝑤〉𝐹𝑥)) |
| 18 | 14, 13 | opex 4262 |
. . . . . . . . 9
⊢
〈𝑧, 𝑤〉 ∈ V |
| 19 | 18, 1 | brelrn 4899 |
. . . . . . . 8
⊢
(〈𝑧, 𝑤〉𝐹𝑥 → 𝑥 ∈ ran 𝐹) |
| 20 | 17, 19 | biimtrdi 163 |
. . . . . . 7
⊢ (𝑦 = 〈𝑤, 𝑧〉 → (𝑦tpos 𝐹𝑥 → 𝑥 ∈ ran 𝐹)) |
| 21 | 20 | exlimivv 1911 |
. . . . . 6
⊢
(∃𝑤∃𝑧 𝑦 = 〈𝑤, 𝑧〉 → (𝑦tpos 𝐹𝑥 → 𝑥 ∈ ran 𝐹)) |
| 22 | 11, 21 | syli 37 |
. . . . 5
⊢ (Rel dom
𝐹 → (𝑦tpos 𝐹𝑥 → 𝑥 ∈ ran 𝐹)) |
| 23 | 22 | exlimdv 1833 |
. . . 4
⊢ (Rel dom
𝐹 → (∃𝑦 𝑦tpos 𝐹𝑥 → 𝑥 ∈ ran 𝐹)) |
| 24 | 2, 23 | biimtrid 152 |
. . 3
⊢ (Rel dom
𝐹 → (𝑥 ∈ ran tpos 𝐹 → 𝑥 ∈ ran 𝐹)) |
| 25 | 1 | elrn 4909 |
. . . 4
⊢ (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 𝑦𝐹𝑥) |
| 26 | 3, 1 | breldm 4870 |
. . . . . . 7
⊢ (𝑦𝐹𝑥 → 𝑦 ∈ dom 𝐹) |
| 27 | | elrel 4765 |
. . . . . . . 8
⊢ ((Rel dom
𝐹 ∧ 𝑦 ∈ dom 𝐹) → ∃𝑧∃𝑤 𝑦 = 〈𝑧, 𝑤〉) |
| 28 | 27 | ex 115 |
. . . . . . 7
⊢ (Rel dom
𝐹 → (𝑦 ∈ dom 𝐹 → ∃𝑧∃𝑤 𝑦 = 〈𝑧, 𝑤〉)) |
| 29 | 26, 28 | syl5 32 |
. . . . . 6
⊢ (Rel dom
𝐹 → (𝑦𝐹𝑥 → ∃𝑧∃𝑤 𝑦 = 〈𝑧, 𝑤〉)) |
| 30 | | breq1 4036 |
. . . . . . . . 9
⊢ (𝑦 = 〈𝑧, 𝑤〉 → (𝑦𝐹𝑥 ↔ 〈𝑧, 𝑤〉𝐹𝑥)) |
| 31 | 30, 16 | bitr4di 198 |
. . . . . . . 8
⊢ (𝑦 = 〈𝑧, 𝑤〉 → (𝑦𝐹𝑥 ↔ 〈𝑤, 𝑧〉tpos 𝐹𝑥)) |
| 32 | 13, 14 | opex 4262 |
. . . . . . . . 9
⊢
〈𝑤, 𝑧〉 ∈ V |
| 33 | 32, 1 | brelrn 4899 |
. . . . . . . 8
⊢
(〈𝑤, 𝑧〉tpos 𝐹𝑥 → 𝑥 ∈ ran tpos 𝐹) |
| 34 | 31, 33 | biimtrdi 163 |
. . . . . . 7
⊢ (𝑦 = 〈𝑧, 𝑤〉 → (𝑦𝐹𝑥 → 𝑥 ∈ ran tpos 𝐹)) |
| 35 | 34 | exlimivv 1911 |
. . . . . 6
⊢
(∃𝑧∃𝑤 𝑦 = 〈𝑧, 𝑤〉 → (𝑦𝐹𝑥 → 𝑥 ∈ ran tpos 𝐹)) |
| 36 | 29, 35 | syli 37 |
. . . . 5
⊢ (Rel dom
𝐹 → (𝑦𝐹𝑥 → 𝑥 ∈ ran tpos 𝐹)) |
| 37 | 36 | exlimdv 1833 |
. . . 4
⊢ (Rel dom
𝐹 → (∃𝑦 𝑦𝐹𝑥 → 𝑥 ∈ ran tpos 𝐹)) |
| 38 | 25, 37 | biimtrid 152 |
. . 3
⊢ (Rel dom
𝐹 → (𝑥 ∈ ran 𝐹 → 𝑥 ∈ ran tpos 𝐹)) |
| 39 | 24, 38 | impbid 129 |
. 2
⊢ (Rel dom
𝐹 → (𝑥 ∈ ran tpos 𝐹 ↔ 𝑥 ∈ ran 𝐹)) |
| 40 | 39 | eqrdv 2194 |
1
⊢ (Rel dom
𝐹 → ran tpos 𝐹 = ran 𝐹) |