ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rntpos GIF version

Theorem rntpos 6373
Description: The range of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
rntpos (Rel dom 𝐹 → ran tpos 𝐹 = ran 𝐹)

Proof of Theorem rntpos
Dummy variables 𝑥 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2782 . . . . 5 𝑥 ∈ V
21elrn 4943 . . . 4 (𝑥 ∈ ran tpos 𝐹 ↔ ∃𝑦 𝑦tpos 𝐹𝑥)
3 vex 2782 . . . . . . . . 9 𝑦 ∈ V
43, 1breldm 4904 . . . . . . . 8 (𝑦tpos 𝐹𝑥𝑦 ∈ dom tpos 𝐹)
5 dmtpos 6372 . . . . . . . . 9 (Rel dom 𝐹 → dom tpos 𝐹 = dom 𝐹)
65eleq2d 2279 . . . . . . . 8 (Rel dom 𝐹 → (𝑦 ∈ dom tpos 𝐹𝑦dom 𝐹))
74, 6imbitrid 154 . . . . . . 7 (Rel dom 𝐹 → (𝑦tpos 𝐹𝑥𝑦dom 𝐹))
8 relcnv 5082 . . . . . . . 8 Rel dom 𝐹
9 elrel 4798 . . . . . . . 8 ((Rel dom 𝐹𝑦dom 𝐹) → ∃𝑤𝑧 𝑦 = ⟨𝑤, 𝑧⟩)
108, 9mpan 424 . . . . . . 7 (𝑦dom 𝐹 → ∃𝑤𝑧 𝑦 = ⟨𝑤, 𝑧⟩)
117, 10syl6 33 . . . . . 6 (Rel dom 𝐹 → (𝑦tpos 𝐹𝑥 → ∃𝑤𝑧 𝑦 = ⟨𝑤, 𝑧⟩))
12 breq1 4065 . . . . . . . . 9 (𝑦 = ⟨𝑤, 𝑧⟩ → (𝑦tpos 𝐹𝑥 ↔ ⟨𝑤, 𝑧⟩tpos 𝐹𝑥))
13 vex 2782 . . . . . . . . . 10 𝑤 ∈ V
14 vex 2782 . . . . . . . . . 10 𝑧 ∈ V
15 brtposg 6370 . . . . . . . . . 10 ((𝑤 ∈ V ∧ 𝑧 ∈ V ∧ 𝑥 ∈ V) → (⟨𝑤, 𝑧⟩tpos 𝐹𝑥 ↔ ⟨𝑧, 𝑤𝐹𝑥))
1613, 14, 1, 15mp3an 1352 . . . . . . . . 9 (⟨𝑤, 𝑧⟩tpos 𝐹𝑥 ↔ ⟨𝑧, 𝑤𝐹𝑥)
1712, 16bitrdi 196 . . . . . . . 8 (𝑦 = ⟨𝑤, 𝑧⟩ → (𝑦tpos 𝐹𝑥 ↔ ⟨𝑧, 𝑤𝐹𝑥))
1814, 13opex 4294 . . . . . . . . 9 𝑧, 𝑤⟩ ∈ V
1918, 1brelrn 4933 . . . . . . . 8 (⟨𝑧, 𝑤𝐹𝑥𝑥 ∈ ran 𝐹)
2017, 19biimtrdi 163 . . . . . . 7 (𝑦 = ⟨𝑤, 𝑧⟩ → (𝑦tpos 𝐹𝑥𝑥 ∈ ran 𝐹))
2120exlimivv 1923 . . . . . 6 (∃𝑤𝑧 𝑦 = ⟨𝑤, 𝑧⟩ → (𝑦tpos 𝐹𝑥𝑥 ∈ ran 𝐹))
2211, 21syli 37 . . . . 5 (Rel dom 𝐹 → (𝑦tpos 𝐹𝑥𝑥 ∈ ran 𝐹))
2322exlimdv 1845 . . . 4 (Rel dom 𝐹 → (∃𝑦 𝑦tpos 𝐹𝑥𝑥 ∈ ran 𝐹))
242, 23biimtrid 152 . . 3 (Rel dom 𝐹 → (𝑥 ∈ ran tpos 𝐹𝑥 ∈ ran 𝐹))
251elrn 4943 . . . 4 (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 𝑦𝐹𝑥)
263, 1breldm 4904 . . . . . . 7 (𝑦𝐹𝑥𝑦 ∈ dom 𝐹)
27 elrel 4798 . . . . . . . 8 ((Rel dom 𝐹𝑦 ∈ dom 𝐹) → ∃𝑧𝑤 𝑦 = ⟨𝑧, 𝑤⟩)
2827ex 115 . . . . . . 7 (Rel dom 𝐹 → (𝑦 ∈ dom 𝐹 → ∃𝑧𝑤 𝑦 = ⟨𝑧, 𝑤⟩))
2926, 28syl5 32 . . . . . 6 (Rel dom 𝐹 → (𝑦𝐹𝑥 → ∃𝑧𝑤 𝑦 = ⟨𝑧, 𝑤⟩))
30 breq1 4065 . . . . . . . . 9 (𝑦 = ⟨𝑧, 𝑤⟩ → (𝑦𝐹𝑥 ↔ ⟨𝑧, 𝑤𝐹𝑥))
3130, 16bitr4di 198 . . . . . . . 8 (𝑦 = ⟨𝑧, 𝑤⟩ → (𝑦𝐹𝑥 ↔ ⟨𝑤, 𝑧⟩tpos 𝐹𝑥))
3213, 14opex 4294 . . . . . . . . 9 𝑤, 𝑧⟩ ∈ V
3332, 1brelrn 4933 . . . . . . . 8 (⟨𝑤, 𝑧⟩tpos 𝐹𝑥𝑥 ∈ ran tpos 𝐹)
3431, 33biimtrdi 163 . . . . . . 7 (𝑦 = ⟨𝑧, 𝑤⟩ → (𝑦𝐹𝑥𝑥 ∈ ran tpos 𝐹))
3534exlimivv 1923 . . . . . 6 (∃𝑧𝑤 𝑦 = ⟨𝑧, 𝑤⟩ → (𝑦𝐹𝑥𝑥 ∈ ran tpos 𝐹))
3629, 35syli 37 . . . . 5 (Rel dom 𝐹 → (𝑦𝐹𝑥𝑥 ∈ ran tpos 𝐹))
3736exlimdv 1845 . . . 4 (Rel dom 𝐹 → (∃𝑦 𝑦𝐹𝑥𝑥 ∈ ran tpos 𝐹))
3825, 37biimtrid 152 . . 3 (Rel dom 𝐹 → (𝑥 ∈ ran 𝐹𝑥 ∈ ran tpos 𝐹))
3924, 38impbid 129 . 2 (Rel dom 𝐹 → (𝑥 ∈ ran tpos 𝐹𝑥 ∈ ran 𝐹))
4039eqrdv 2207 1 (Rel dom 𝐹 → ran tpos 𝐹 = ran 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1375  wex 1518  wcel 2180  Vcvv 2779  cop 3649   class class class wbr 4062  ccnv 4695  dom cdm 4696  ran crn 4697  Rel wrel 4701  tpos ctpos 6360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-rab 2497  df-v 2781  df-sbc 3009  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-fv 5302  df-tpos 6361
This theorem is referenced by:  tposfo2  6383
  Copyright terms: Public domain W3C validator