ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rntpos GIF version

Theorem rntpos 6409
Description: The range of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
rntpos (Rel dom 𝐹 → ran tpos 𝐹 = ran 𝐹)

Proof of Theorem rntpos
Dummy variables 𝑥 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2802 . . . . 5 𝑥 ∈ V
21elrn 4967 . . . 4 (𝑥 ∈ ran tpos 𝐹 ↔ ∃𝑦 𝑦tpos 𝐹𝑥)
3 vex 2802 . . . . . . . . 9 𝑦 ∈ V
43, 1breldm 4927 . . . . . . . 8 (𝑦tpos 𝐹𝑥𝑦 ∈ dom tpos 𝐹)
5 dmtpos 6408 . . . . . . . . 9 (Rel dom 𝐹 → dom tpos 𝐹 = dom 𝐹)
65eleq2d 2299 . . . . . . . 8 (Rel dom 𝐹 → (𝑦 ∈ dom tpos 𝐹𝑦dom 𝐹))
74, 6imbitrid 154 . . . . . . 7 (Rel dom 𝐹 → (𝑦tpos 𝐹𝑥𝑦dom 𝐹))
8 relcnv 5106 . . . . . . . 8 Rel dom 𝐹
9 elrel 4821 . . . . . . . 8 ((Rel dom 𝐹𝑦dom 𝐹) → ∃𝑤𝑧 𝑦 = ⟨𝑤, 𝑧⟩)
108, 9mpan 424 . . . . . . 7 (𝑦dom 𝐹 → ∃𝑤𝑧 𝑦 = ⟨𝑤, 𝑧⟩)
117, 10syl6 33 . . . . . 6 (Rel dom 𝐹 → (𝑦tpos 𝐹𝑥 → ∃𝑤𝑧 𝑦 = ⟨𝑤, 𝑧⟩))
12 breq1 4086 . . . . . . . . 9 (𝑦 = ⟨𝑤, 𝑧⟩ → (𝑦tpos 𝐹𝑥 ↔ ⟨𝑤, 𝑧⟩tpos 𝐹𝑥))
13 vex 2802 . . . . . . . . . 10 𝑤 ∈ V
14 vex 2802 . . . . . . . . . 10 𝑧 ∈ V
15 brtposg 6406 . . . . . . . . . 10 ((𝑤 ∈ V ∧ 𝑧 ∈ V ∧ 𝑥 ∈ V) → (⟨𝑤, 𝑧⟩tpos 𝐹𝑥 ↔ ⟨𝑧, 𝑤𝐹𝑥))
1613, 14, 1, 15mp3an 1371 . . . . . . . . 9 (⟨𝑤, 𝑧⟩tpos 𝐹𝑥 ↔ ⟨𝑧, 𝑤𝐹𝑥)
1712, 16bitrdi 196 . . . . . . . 8 (𝑦 = ⟨𝑤, 𝑧⟩ → (𝑦tpos 𝐹𝑥 ↔ ⟨𝑧, 𝑤𝐹𝑥))
1814, 13opex 4315 . . . . . . . . 9 𝑧, 𝑤⟩ ∈ V
1918, 1brelrn 4957 . . . . . . . 8 (⟨𝑧, 𝑤𝐹𝑥𝑥 ∈ ran 𝐹)
2017, 19biimtrdi 163 . . . . . . 7 (𝑦 = ⟨𝑤, 𝑧⟩ → (𝑦tpos 𝐹𝑥𝑥 ∈ ran 𝐹))
2120exlimivv 1943 . . . . . 6 (∃𝑤𝑧 𝑦 = ⟨𝑤, 𝑧⟩ → (𝑦tpos 𝐹𝑥𝑥 ∈ ran 𝐹))
2211, 21syli 37 . . . . 5 (Rel dom 𝐹 → (𝑦tpos 𝐹𝑥𝑥 ∈ ran 𝐹))
2322exlimdv 1865 . . . 4 (Rel dom 𝐹 → (∃𝑦 𝑦tpos 𝐹𝑥𝑥 ∈ ran 𝐹))
242, 23biimtrid 152 . . 3 (Rel dom 𝐹 → (𝑥 ∈ ran tpos 𝐹𝑥 ∈ ran 𝐹))
251elrn 4967 . . . 4 (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 𝑦𝐹𝑥)
263, 1breldm 4927 . . . . . . 7 (𝑦𝐹𝑥𝑦 ∈ dom 𝐹)
27 elrel 4821 . . . . . . . 8 ((Rel dom 𝐹𝑦 ∈ dom 𝐹) → ∃𝑧𝑤 𝑦 = ⟨𝑧, 𝑤⟩)
2827ex 115 . . . . . . 7 (Rel dom 𝐹 → (𝑦 ∈ dom 𝐹 → ∃𝑧𝑤 𝑦 = ⟨𝑧, 𝑤⟩))
2926, 28syl5 32 . . . . . 6 (Rel dom 𝐹 → (𝑦𝐹𝑥 → ∃𝑧𝑤 𝑦 = ⟨𝑧, 𝑤⟩))
30 breq1 4086 . . . . . . . . 9 (𝑦 = ⟨𝑧, 𝑤⟩ → (𝑦𝐹𝑥 ↔ ⟨𝑧, 𝑤𝐹𝑥))
3130, 16bitr4di 198 . . . . . . . 8 (𝑦 = ⟨𝑧, 𝑤⟩ → (𝑦𝐹𝑥 ↔ ⟨𝑤, 𝑧⟩tpos 𝐹𝑥))
3213, 14opex 4315 . . . . . . . . 9 𝑤, 𝑧⟩ ∈ V
3332, 1brelrn 4957 . . . . . . . 8 (⟨𝑤, 𝑧⟩tpos 𝐹𝑥𝑥 ∈ ran tpos 𝐹)
3431, 33biimtrdi 163 . . . . . . 7 (𝑦 = ⟨𝑧, 𝑤⟩ → (𝑦𝐹𝑥𝑥 ∈ ran tpos 𝐹))
3534exlimivv 1943 . . . . . 6 (∃𝑧𝑤 𝑦 = ⟨𝑧, 𝑤⟩ → (𝑦𝐹𝑥𝑥 ∈ ran tpos 𝐹))
3629, 35syli 37 . . . . 5 (Rel dom 𝐹 → (𝑦𝐹𝑥𝑥 ∈ ran tpos 𝐹))
3736exlimdv 1865 . . . 4 (Rel dom 𝐹 → (∃𝑦 𝑦𝐹𝑥𝑥 ∈ ran tpos 𝐹))
3825, 37biimtrid 152 . . 3 (Rel dom 𝐹 → (𝑥 ∈ ran 𝐹𝑥 ∈ ran tpos 𝐹))
3924, 38impbid 129 . 2 (Rel dom 𝐹 → (𝑥 ∈ ran tpos 𝐹𝑥 ∈ ran 𝐹))
4039eqrdv 2227 1 (Rel dom 𝐹 → ran tpos 𝐹 = ran 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  wex 1538  wcel 2200  Vcvv 2799  cop 3669   class class class wbr 4083  ccnv 4718  dom cdm 4719  ran crn 4720  Rel wrel 4724  tpos ctpos 6396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-tpos 6397
This theorem is referenced by:  tposfo2  6419
  Copyright terms: Public domain W3C validator