Step | Hyp | Ref
| Expression |
1 | | vex 2733 |
. . . . 5
⊢ 𝑥 ∈ V |
2 | 1 | elrn 4854 |
. . . 4
⊢ (𝑥 ∈ ran tpos 𝐹 ↔ ∃𝑦 𝑦tpos 𝐹𝑥) |
3 | | vex 2733 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
4 | 3, 1 | breldm 4815 |
. . . . . . . 8
⊢ (𝑦tpos 𝐹𝑥 → 𝑦 ∈ dom tpos 𝐹) |
5 | | dmtpos 6235 |
. . . . . . . . 9
⊢ (Rel dom
𝐹 → dom tpos 𝐹 = ◡dom 𝐹) |
6 | 5 | eleq2d 2240 |
. . . . . . . 8
⊢ (Rel dom
𝐹 → (𝑦 ∈ dom tpos 𝐹 ↔ 𝑦 ∈ ◡dom 𝐹)) |
7 | 4, 6 | syl5ib 153 |
. . . . . . 7
⊢ (Rel dom
𝐹 → (𝑦tpos 𝐹𝑥 → 𝑦 ∈ ◡dom 𝐹)) |
8 | | relcnv 4989 |
. . . . . . . 8
⊢ Rel ◡dom 𝐹 |
9 | | elrel 4713 |
. . . . . . . 8
⊢ ((Rel
◡dom 𝐹 ∧ 𝑦 ∈ ◡dom 𝐹) → ∃𝑤∃𝑧 𝑦 = 〈𝑤, 𝑧〉) |
10 | 8, 9 | mpan 422 |
. . . . . . 7
⊢ (𝑦 ∈ ◡dom 𝐹 → ∃𝑤∃𝑧 𝑦 = 〈𝑤, 𝑧〉) |
11 | 7, 10 | syl6 33 |
. . . . . 6
⊢ (Rel dom
𝐹 → (𝑦tpos 𝐹𝑥 → ∃𝑤∃𝑧 𝑦 = 〈𝑤, 𝑧〉)) |
12 | | breq1 3992 |
. . . . . . . . 9
⊢ (𝑦 = 〈𝑤, 𝑧〉 → (𝑦tpos 𝐹𝑥 ↔ 〈𝑤, 𝑧〉tpos 𝐹𝑥)) |
13 | | vex 2733 |
. . . . . . . . . 10
⊢ 𝑤 ∈ V |
14 | | vex 2733 |
. . . . . . . . . 10
⊢ 𝑧 ∈ V |
15 | | brtposg 6233 |
. . . . . . . . . 10
⊢ ((𝑤 ∈ V ∧ 𝑧 ∈ V ∧ 𝑥 ∈ V) → (〈𝑤, 𝑧〉tpos 𝐹𝑥 ↔ 〈𝑧, 𝑤〉𝐹𝑥)) |
16 | 13, 14, 1, 15 | mp3an 1332 |
. . . . . . . . 9
⊢
(〈𝑤, 𝑧〉tpos 𝐹𝑥 ↔ 〈𝑧, 𝑤〉𝐹𝑥) |
17 | 12, 16 | bitrdi 195 |
. . . . . . . 8
⊢ (𝑦 = 〈𝑤, 𝑧〉 → (𝑦tpos 𝐹𝑥 ↔ 〈𝑧, 𝑤〉𝐹𝑥)) |
18 | 14, 13 | opex 4214 |
. . . . . . . . 9
⊢
〈𝑧, 𝑤〉 ∈ V |
19 | 18, 1 | brelrn 4844 |
. . . . . . . 8
⊢
(〈𝑧, 𝑤〉𝐹𝑥 → 𝑥 ∈ ran 𝐹) |
20 | 17, 19 | syl6bi 162 |
. . . . . . 7
⊢ (𝑦 = 〈𝑤, 𝑧〉 → (𝑦tpos 𝐹𝑥 → 𝑥 ∈ ran 𝐹)) |
21 | 20 | exlimivv 1889 |
. . . . . 6
⊢
(∃𝑤∃𝑧 𝑦 = 〈𝑤, 𝑧〉 → (𝑦tpos 𝐹𝑥 → 𝑥 ∈ ran 𝐹)) |
22 | 11, 21 | syli 37 |
. . . . 5
⊢ (Rel dom
𝐹 → (𝑦tpos 𝐹𝑥 → 𝑥 ∈ ran 𝐹)) |
23 | 22 | exlimdv 1812 |
. . . 4
⊢ (Rel dom
𝐹 → (∃𝑦 𝑦tpos 𝐹𝑥 → 𝑥 ∈ ran 𝐹)) |
24 | 2, 23 | syl5bi 151 |
. . 3
⊢ (Rel dom
𝐹 → (𝑥 ∈ ran tpos 𝐹 → 𝑥 ∈ ran 𝐹)) |
25 | 1 | elrn 4854 |
. . . 4
⊢ (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 𝑦𝐹𝑥) |
26 | 3, 1 | breldm 4815 |
. . . . . . 7
⊢ (𝑦𝐹𝑥 → 𝑦 ∈ dom 𝐹) |
27 | | elrel 4713 |
. . . . . . . 8
⊢ ((Rel dom
𝐹 ∧ 𝑦 ∈ dom 𝐹) → ∃𝑧∃𝑤 𝑦 = 〈𝑧, 𝑤〉) |
28 | 27 | ex 114 |
. . . . . . 7
⊢ (Rel dom
𝐹 → (𝑦 ∈ dom 𝐹 → ∃𝑧∃𝑤 𝑦 = 〈𝑧, 𝑤〉)) |
29 | 26, 28 | syl5 32 |
. . . . . 6
⊢ (Rel dom
𝐹 → (𝑦𝐹𝑥 → ∃𝑧∃𝑤 𝑦 = 〈𝑧, 𝑤〉)) |
30 | | breq1 3992 |
. . . . . . . . 9
⊢ (𝑦 = 〈𝑧, 𝑤〉 → (𝑦𝐹𝑥 ↔ 〈𝑧, 𝑤〉𝐹𝑥)) |
31 | 30, 16 | bitr4di 197 |
. . . . . . . 8
⊢ (𝑦 = 〈𝑧, 𝑤〉 → (𝑦𝐹𝑥 ↔ 〈𝑤, 𝑧〉tpos 𝐹𝑥)) |
32 | 13, 14 | opex 4214 |
. . . . . . . . 9
⊢
〈𝑤, 𝑧〉 ∈ V |
33 | 32, 1 | brelrn 4844 |
. . . . . . . 8
⊢
(〈𝑤, 𝑧〉tpos 𝐹𝑥 → 𝑥 ∈ ran tpos 𝐹) |
34 | 31, 33 | syl6bi 162 |
. . . . . . 7
⊢ (𝑦 = 〈𝑧, 𝑤〉 → (𝑦𝐹𝑥 → 𝑥 ∈ ran tpos 𝐹)) |
35 | 34 | exlimivv 1889 |
. . . . . 6
⊢
(∃𝑧∃𝑤 𝑦 = 〈𝑧, 𝑤〉 → (𝑦𝐹𝑥 → 𝑥 ∈ ran tpos 𝐹)) |
36 | 29, 35 | syli 37 |
. . . . 5
⊢ (Rel dom
𝐹 → (𝑦𝐹𝑥 → 𝑥 ∈ ran tpos 𝐹)) |
37 | 36 | exlimdv 1812 |
. . . 4
⊢ (Rel dom
𝐹 → (∃𝑦 𝑦𝐹𝑥 → 𝑥 ∈ ran tpos 𝐹)) |
38 | 25, 37 | syl5bi 151 |
. . 3
⊢ (Rel dom
𝐹 → (𝑥 ∈ ran 𝐹 → 𝑥 ∈ ran tpos 𝐹)) |
39 | 24, 38 | impbid 128 |
. 2
⊢ (Rel dom
𝐹 → (𝑥 ∈ ran tpos 𝐹 ↔ 𝑥 ∈ ran 𝐹)) |
40 | 39 | eqrdv 2168 |
1
⊢ (Rel dom
𝐹 → ran tpos 𝐹 = ran 𝐹) |