ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeldmg GIF version

Theorem opeldmg 4834
Description: Membership of first of an ordered pair in a domain. (Contributed by Jim Kingdon, 9-Jul-2019.)
Assertion
Ref Expression
opeldmg ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴 ∈ dom 𝐶))

Proof of Theorem opeldmg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 opeq2 3781 . . . . 5 (𝑦 = 𝐵 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
21eleq1d 2246 . . . 4 (𝑦 = 𝐵 → (⟨𝐴, 𝑦⟩ ∈ 𝐶 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐶))
32spcegv 2827 . . 3 (𝐵𝑊 → (⟨𝐴, 𝐵⟩ ∈ 𝐶 → ∃𝑦𝐴, 𝑦⟩ ∈ 𝐶))
43adantl 277 . 2 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ 𝐶 → ∃𝑦𝐴, 𝑦⟩ ∈ 𝐶))
5 eldm2g 4825 . . 3 (𝐴𝑉 → (𝐴 ∈ dom 𝐶 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐶))
65adantr 276 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴 ∈ dom 𝐶 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐶))
74, 6sylibrd 169 1 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴 ∈ dom 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wex 1492  wcel 2148  cop 3597  dom cdm 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-dm 4638
This theorem is referenced by:  tfr0dm  6325  tfrlemi14d  6336  tfr1onlemres  6352  tfrcllemres  6365  fnfi  6938  frecuzrdgtcl  10414  frecuzrdgdomlem  10419  hashennn  10762  imasaddfnlemg  12740
  Copyright terms: Public domain W3C validator