![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opeldmg | GIF version |
Description: Membership of first of an ordered pair in a domain. (Contributed by Jim Kingdon, 9-Jul-2019.) |
Ref | Expression |
---|---|
opeldmg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq2 3645 | . . . . 5 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
2 | 1 | eleq1d 2163 | . . . 4 ⊢ (𝑦 = 𝐵 → (〈𝐴, 𝑦〉 ∈ 𝐶 ↔ 〈𝐴, 𝐵〉 ∈ 𝐶)) |
3 | 2 | spcegv 2721 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (〈𝐴, 𝐵〉 ∈ 𝐶 → ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐶)) |
4 | 3 | adantl 272 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ 𝐶 → ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐶)) |
5 | eldm2g 4663 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐶 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐶)) | |
6 | 5 | adantr 271 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ dom 𝐶 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐶)) |
7 | 4, 6 | sylibrd 168 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1296 ∃wex 1433 ∈ wcel 1445 〈cop 3469 dom cdm 4467 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-v 2635 df-un 3017 df-sn 3472 df-pr 3473 df-op 3475 df-br 3868 df-dm 4477 |
This theorem is referenced by: tfr0dm 6125 tfrlemi14d 6136 tfr1onlemres 6152 tfrcllemres 6165 fnfi 6726 frecuzrdgtcl 9968 frecuzrdgdomlem 9973 hashennn 10319 |
Copyright terms: Public domain | W3C validator |