| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeldmg | GIF version | ||
| Description: Membership of first of an ordered pair in a domain. (Contributed by Jim Kingdon, 9-Jul-2019.) |
| Ref | Expression |
|---|---|
| opeldmg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq2 3820 | . . . . 5 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
| 2 | 1 | eleq1d 2274 | . . . 4 ⊢ (𝑦 = 𝐵 → (〈𝐴, 𝑦〉 ∈ 𝐶 ↔ 〈𝐴, 𝐵〉 ∈ 𝐶)) |
| 3 | 2 | spcegv 2861 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (〈𝐴, 𝐵〉 ∈ 𝐶 → ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐶)) |
| 4 | 3 | adantl 277 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ 𝐶 → ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐶)) |
| 5 | eldm2g 4874 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐶 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐶)) | |
| 6 | 5 | adantr 276 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ dom 𝐶 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐶)) |
| 7 | 4, 6 | sylibrd 169 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∃wex 1515 ∈ wcel 2176 〈cop 3636 dom cdm 4675 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-dm 4685 |
| This theorem is referenced by: tfr0dm 6408 tfrlemi14d 6419 tfr1onlemres 6435 tfrcllemres 6448 fnfi 7038 frecuzrdgtcl 10557 frecuzrdgdomlem 10562 hashennn 10925 imasaddfnlemg 13146 |
| Copyright terms: Public domain | W3C validator |