ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brrelex12i GIF version

Theorem brrelex12i 4717
Description: Two classes that are related by a binary relation are sets. (An artifact of our ordered pair definition.) (Contributed by BJ, 3-Oct-2022.)
Hypothesis
Ref Expression
brrelexi.1 Rel 𝑅
Assertion
Ref Expression
brrelex12i (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem brrelex12i
StepHypRef Expression
1 brrelexi.1 . 2 Rel 𝑅
2 brrelex12 4713 . 2 ((Rel 𝑅𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
31, 2mpan 424 1 (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2176  Vcvv 2772   class class class wbr 4044  Rel wrel 4680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-xp 4681  df-rel 4682
This theorem is referenced by:  brabv  4805  isstruct2im  12842
  Copyright terms: Public domain W3C validator