Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isstruct2im | GIF version |
Description: The property of being a structure with components in (1st ‘𝑋)...(2nd ‘𝑋). (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.) |
Ref | Expression |
---|---|
isstruct2im | ⊢ (𝐹 Struct 𝑋 → (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brstruct 12403 | . . . 4 ⊢ Rel Struct | |
2 | 1 | brrelex12i 4646 | . . 3 ⊢ (𝐹 Struct 𝑋 → (𝐹 ∈ V ∧ 𝑋 ∈ V)) |
3 | simpr 109 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
4 | 3 | eleq1d 2235 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ↔ 𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)))) |
5 | simpl 108 | . . . . . . 7 ⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → 𝑓 = 𝐹) | |
6 | 5 | difeq1d 3239 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → (𝑓 ∖ {∅}) = (𝐹 ∖ {∅})) |
7 | 6 | funeqd 5210 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → (Fun (𝑓 ∖ {∅}) ↔ Fun (𝐹 ∖ {∅}))) |
8 | 5 | dmeqd 4806 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → dom 𝑓 = dom 𝐹) |
9 | 3 | fveq2d 5490 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → (...‘𝑥) = (...‘𝑋)) |
10 | 8, 9 | sseq12d 3173 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → (dom 𝑓 ⊆ (...‘𝑥) ↔ dom 𝐹 ⊆ (...‘𝑋))) |
11 | 4, 7, 10 | 3anbi123d 1302 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → ((𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥)) ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)))) |
12 | df-struct 12396 | . . . 4 ⊢ Struct = {〈𝑓, 𝑥〉 ∣ (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))} | |
13 | 11, 12 | brabga 4242 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝑋 ∈ V) → (𝐹 Struct 𝑋 ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)))) |
14 | 2, 13 | syl 14 | . 2 ⊢ (𝐹 Struct 𝑋 → (𝐹 Struct 𝑋 ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)))) |
15 | 14 | ibi 175 | 1 ⊢ (𝐹 Struct 𝑋 → (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 968 = wceq 1343 ∈ wcel 2136 Vcvv 2726 ∖ cdif 3113 ∩ cin 3115 ⊆ wss 3116 ∅c0 3409 {csn 3576 class class class wbr 3982 × cxp 4602 dom cdm 4604 Fun wfun 5182 ‘cfv 5188 ≤ cle 7934 ℕcn 8857 ...cfz 9944 Struct cstr 12390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-struct 12396 |
This theorem is referenced by: structn0fun 12407 isstructim 12408 |
Copyright terms: Public domain | W3C validator |