![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isstruct2im | GIF version |
Description: The property of being a structure with components in (1st ‘𝑋)...(2nd ‘𝑋). (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.) |
Ref | Expression |
---|---|
isstruct2im | ⊢ (𝐹 Struct 𝑋 → (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brstruct 12630 | . . . 4 ⊢ Rel Struct | |
2 | 1 | brrelex12i 4702 | . . 3 ⊢ (𝐹 Struct 𝑋 → (𝐹 ∈ V ∧ 𝑋 ∈ V)) |
3 | simpr 110 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
4 | 3 | eleq1d 2262 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ↔ 𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)))) |
5 | simpl 109 | . . . . . . 7 ⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → 𝑓 = 𝐹) | |
6 | 5 | difeq1d 3277 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → (𝑓 ∖ {∅}) = (𝐹 ∖ {∅})) |
7 | 6 | funeqd 5277 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → (Fun (𝑓 ∖ {∅}) ↔ Fun (𝐹 ∖ {∅}))) |
8 | 5 | dmeqd 4865 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → dom 𝑓 = dom 𝐹) |
9 | 3 | fveq2d 5559 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → (...‘𝑥) = (...‘𝑋)) |
10 | 8, 9 | sseq12d 3211 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → (dom 𝑓 ⊆ (...‘𝑥) ↔ dom 𝐹 ⊆ (...‘𝑋))) |
11 | 4, 7, 10 | 3anbi123d 1323 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → ((𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥)) ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)))) |
12 | df-struct 12623 | . . . 4 ⊢ Struct = {〈𝑓, 𝑥〉 ∣ (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))} | |
13 | 11, 12 | brabga 4295 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝑋 ∈ V) → (𝐹 Struct 𝑋 ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)))) |
14 | 2, 13 | syl 14 | . 2 ⊢ (𝐹 Struct 𝑋 → (𝐹 Struct 𝑋 ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)))) |
15 | 14 | ibi 176 | 1 ⊢ (𝐹 Struct 𝑋 → (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∖ cdif 3151 ∩ cin 3153 ⊆ wss 3154 ∅c0 3447 {csn 3619 class class class wbr 4030 × cxp 4658 dom cdm 4660 Fun wfun 5249 ‘cfv 5255 ≤ cle 8057 ℕcn 8984 ...cfz 10077 Struct cstr 12617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-struct 12623 |
This theorem is referenced by: structn0fun 12634 isstructim 12635 |
Copyright terms: Public domain | W3C validator |