| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isstruct2im | GIF version | ||
| Description: The property of being a structure with components in (1st ‘𝑋)...(2nd ‘𝑋). (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.) |
| Ref | Expression |
|---|---|
| isstruct2im | ⊢ (𝐹 Struct 𝑋 → (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brstruct 12841 | . . . 4 ⊢ Rel Struct | |
| 2 | 1 | brrelex12i 4717 | . . 3 ⊢ (𝐹 Struct 𝑋 → (𝐹 ∈ V ∧ 𝑋 ∈ V)) |
| 3 | simpr 110 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
| 4 | 3 | eleq1d 2274 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ↔ 𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)))) |
| 5 | simpl 109 | . . . . . . 7 ⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → 𝑓 = 𝐹) | |
| 6 | 5 | difeq1d 3290 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → (𝑓 ∖ {∅}) = (𝐹 ∖ {∅})) |
| 7 | 6 | funeqd 5293 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → (Fun (𝑓 ∖ {∅}) ↔ Fun (𝐹 ∖ {∅}))) |
| 8 | 5 | dmeqd 4880 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → dom 𝑓 = dom 𝐹) |
| 9 | 3 | fveq2d 5580 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → (...‘𝑥) = (...‘𝑋)) |
| 10 | 8, 9 | sseq12d 3224 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → (dom 𝑓 ⊆ (...‘𝑥) ↔ dom 𝐹 ⊆ (...‘𝑋))) |
| 11 | 4, 7, 10 | 3anbi123d 1325 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → ((𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥)) ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)))) |
| 12 | df-struct 12834 | . . . 4 ⊢ Struct = {〈𝑓, 𝑥〉 ∣ (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))} | |
| 13 | 11, 12 | brabga 4310 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝑋 ∈ V) → (𝐹 Struct 𝑋 ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)))) |
| 14 | 2, 13 | syl 14 | . 2 ⊢ (𝐹 Struct 𝑋 → (𝐹 Struct 𝑋 ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)))) |
| 15 | 14 | ibi 176 | 1 ⊢ (𝐹 Struct 𝑋 → (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2176 Vcvv 2772 ∖ cdif 3163 ∩ cin 3165 ⊆ wss 3166 ∅c0 3460 {csn 3633 class class class wbr 4044 × cxp 4673 dom cdm 4675 Fun wfun 5265 ‘cfv 5271 ≤ cle 8108 ℕcn 9036 ...cfz 10130 Struct cstr 12828 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-struct 12834 |
| This theorem is referenced by: structn0fun 12845 isstructim 12846 |
| Copyright terms: Public domain | W3C validator |