![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isstruct2im | GIF version |
Description: The property of being a structure with components in (1st ‘𝑋)...(2nd ‘𝑋). (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.) |
Ref | Expression |
---|---|
isstruct2im | ⊢ (𝐹 Struct 𝑋 → (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brstruct 12627 | . . . 4 ⊢ Rel Struct | |
2 | 1 | brrelex12i 4701 | . . 3 ⊢ (𝐹 Struct 𝑋 → (𝐹 ∈ V ∧ 𝑋 ∈ V)) |
3 | simpr 110 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
4 | 3 | eleq1d 2262 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ↔ 𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)))) |
5 | simpl 109 | . . . . . . 7 ⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → 𝑓 = 𝐹) | |
6 | 5 | difeq1d 3276 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → (𝑓 ∖ {∅}) = (𝐹 ∖ {∅})) |
7 | 6 | funeqd 5276 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → (Fun (𝑓 ∖ {∅}) ↔ Fun (𝐹 ∖ {∅}))) |
8 | 5 | dmeqd 4864 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → dom 𝑓 = dom 𝐹) |
9 | 3 | fveq2d 5558 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → (...‘𝑥) = (...‘𝑋)) |
10 | 8, 9 | sseq12d 3210 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → (dom 𝑓 ⊆ (...‘𝑥) ↔ dom 𝐹 ⊆ (...‘𝑋))) |
11 | 4, 7, 10 | 3anbi123d 1323 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑥 = 𝑋) → ((𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥)) ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)))) |
12 | df-struct 12620 | . . . 4 ⊢ Struct = {〈𝑓, 𝑥〉 ∣ (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))} | |
13 | 11, 12 | brabga 4294 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝑋 ∈ V) → (𝐹 Struct 𝑋 ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)))) |
14 | 2, 13 | syl 14 | . 2 ⊢ (𝐹 Struct 𝑋 → (𝐹 Struct 𝑋 ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)))) |
15 | 14 | ibi 176 | 1 ⊢ (𝐹 Struct 𝑋 → (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∖ cdif 3150 ∩ cin 3152 ⊆ wss 3153 ∅c0 3446 {csn 3618 class class class wbr 4029 × cxp 4657 dom cdm 4659 Fun wfun 5248 ‘cfv 5254 ≤ cle 8055 ℕcn 8982 ...cfz 10074 Struct cstr 12614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-struct 12620 |
This theorem is referenced by: structn0fun 12631 isstructim 12632 |
Copyright terms: Public domain | W3C validator |