ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isstruct2im GIF version

Theorem isstruct2im 13037
Description: The property of being a structure with components in (1st𝑋)...(2nd𝑋). (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.)
Assertion
Ref Expression
isstruct2im (𝐹 Struct 𝑋 → (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)))

Proof of Theorem isstruct2im
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brstruct 13036 . . . 4 Rel Struct
21brrelex12i 4760 . . 3 (𝐹 Struct 𝑋 → (𝐹 ∈ V ∧ 𝑋 ∈ V))
3 simpr 110 . . . . . 6 ((𝑓 = 𝐹𝑥 = 𝑋) → 𝑥 = 𝑋)
43eleq1d 2298 . . . . 5 ((𝑓 = 𝐹𝑥 = 𝑋) → (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ↔ 𝑋 ∈ ( ≤ ∩ (ℕ × ℕ))))
5 simpl 109 . . . . . . 7 ((𝑓 = 𝐹𝑥 = 𝑋) → 𝑓 = 𝐹)
65difeq1d 3321 . . . . . 6 ((𝑓 = 𝐹𝑥 = 𝑋) → (𝑓 ∖ {∅}) = (𝐹 ∖ {∅}))
76funeqd 5339 . . . . 5 ((𝑓 = 𝐹𝑥 = 𝑋) → (Fun (𝑓 ∖ {∅}) ↔ Fun (𝐹 ∖ {∅})))
85dmeqd 4924 . . . . . 6 ((𝑓 = 𝐹𝑥 = 𝑋) → dom 𝑓 = dom 𝐹)
93fveq2d 5630 . . . . . 6 ((𝑓 = 𝐹𝑥 = 𝑋) → (...‘𝑥) = (...‘𝑋))
108, 9sseq12d 3255 . . . . 5 ((𝑓 = 𝐹𝑥 = 𝑋) → (dom 𝑓 ⊆ (...‘𝑥) ↔ dom 𝐹 ⊆ (...‘𝑋)))
114, 7, 103anbi123d 1346 . . . 4 ((𝑓 = 𝐹𝑥 = 𝑋) → ((𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥)) ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋))))
12 df-struct 13029 . . . 4 Struct = {⟨𝑓, 𝑥⟩ ∣ (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))}
1311, 12brabga 4351 . . 3 ((𝐹 ∈ V ∧ 𝑋 ∈ V) → (𝐹 Struct 𝑋 ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋))))
142, 13syl 14 . 2 (𝐹 Struct 𝑋 → (𝐹 Struct 𝑋 ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋))))
1514ibi 176 1 (𝐹 Struct 𝑋 → (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  Vcvv 2799  cdif 3194  cin 3196  wss 3197  c0 3491  {csn 3666   class class class wbr 4082   × cxp 4716  dom cdm 4718  Fun wfun 5311  cfv 5317  cle 8178  cn 9106  ...cfz 10200   Struct cstr 13023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-struct 13029
This theorem is referenced by:  structn0fun  13040  isstructim  13041
  Copyright terms: Public domain W3C validator