ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isstruct2im GIF version

Theorem isstruct2im 12426
Description: The property of being a structure with components in (1st𝑋)...(2nd𝑋). (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.)
Assertion
Ref Expression
isstruct2im (𝐹 Struct 𝑋 → (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)))

Proof of Theorem isstruct2im
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brstruct 12425 . . . 4 Rel Struct
21brrelex12i 4653 . . 3 (𝐹 Struct 𝑋 → (𝐹 ∈ V ∧ 𝑋 ∈ V))
3 simpr 109 . . . . . 6 ((𝑓 = 𝐹𝑥 = 𝑋) → 𝑥 = 𝑋)
43eleq1d 2239 . . . . 5 ((𝑓 = 𝐹𝑥 = 𝑋) → (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ↔ 𝑋 ∈ ( ≤ ∩ (ℕ × ℕ))))
5 simpl 108 . . . . . . 7 ((𝑓 = 𝐹𝑥 = 𝑋) → 𝑓 = 𝐹)
65difeq1d 3244 . . . . . 6 ((𝑓 = 𝐹𝑥 = 𝑋) → (𝑓 ∖ {∅}) = (𝐹 ∖ {∅}))
76funeqd 5220 . . . . 5 ((𝑓 = 𝐹𝑥 = 𝑋) → (Fun (𝑓 ∖ {∅}) ↔ Fun (𝐹 ∖ {∅})))
85dmeqd 4813 . . . . . 6 ((𝑓 = 𝐹𝑥 = 𝑋) → dom 𝑓 = dom 𝐹)
93fveq2d 5500 . . . . . 6 ((𝑓 = 𝐹𝑥 = 𝑋) → (...‘𝑥) = (...‘𝑋))
108, 9sseq12d 3178 . . . . 5 ((𝑓 = 𝐹𝑥 = 𝑋) → (dom 𝑓 ⊆ (...‘𝑥) ↔ dom 𝐹 ⊆ (...‘𝑋)))
114, 7, 103anbi123d 1307 . . . 4 ((𝑓 = 𝐹𝑥 = 𝑋) → ((𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥)) ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋))))
12 df-struct 12418 . . . 4 Struct = {⟨𝑓, 𝑥⟩ ∣ (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))}
1311, 12brabga 4249 . . 3 ((𝐹 ∈ V ∧ 𝑋 ∈ V) → (𝐹 Struct 𝑋 ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋))))
142, 13syl 14 . 2 (𝐹 Struct 𝑋 → (𝐹 Struct 𝑋 ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋))))
1514ibi 175 1 (𝐹 Struct 𝑋 → (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  Vcvv 2730  cdif 3118  cin 3120  wss 3121  c0 3414  {csn 3583   class class class wbr 3989   × cxp 4609  dom cdm 4611  Fun wfun 5192  cfv 5198  cle 7955  cn 8878  ...cfz 9965   Struct cstr 12412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-struct 12418
This theorem is referenced by:  structn0fun  12429  isstructim  12430
  Copyright terms: Public domain W3C validator