ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brrelex1i GIF version

Theorem brrelex1i 4736
Description: The first argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by NM, 4-Jun-1998.)
Hypothesis
Ref Expression
brrelexi.1 Rel 𝑅
Assertion
Ref Expression
brrelex1i (𝐴𝑅𝐵𝐴 ∈ V)

Proof of Theorem brrelex1i
StepHypRef Expression
1 brrelexi.1 . 2 Rel 𝑅
2 brrelex1 4732 . 2 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ V)
31, 2mpan 424 1 (𝐴𝑅𝐵𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2178  Vcvv 2776   class class class wbr 4059  Rel wrel 4698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700
This theorem is referenced by:  nprrel  4738  vtoclr  4741  opeliunxp2  4836  ideqg  4847  issetid  4850  fvmptss2  5677  opeliunxp2f  6347  brtpos2  6360  brdomg  6860  ctex  6865  isfi  6875  domssr  6892  en1uniel  6919  xpdom2  6951  xpdom1g  6953  xpen  6967  isbth  7095  djudom  7221  cc3  7415  aprcl  8754  climcl  11708  climi  11713  climrecl  11750  structex  12959
  Copyright terms: Public domain W3C validator