ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brrelex1i GIF version

Theorem brrelex1i 4510
Description: The first argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by NM, 4-Jun-1998.)
Hypothesis
Ref Expression
brrelexi.1 Rel 𝑅
Assertion
Ref Expression
brrelex1i (𝐴𝑅𝐵𝐴 ∈ V)

Proof of Theorem brrelex1i
StepHypRef Expression
1 brrelexi.1 . 2 Rel 𝑅
2 brrelex1 4506 . 2 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ V)
31, 2mpan 416 1 (𝐴𝑅𝐵𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1445  Vcvv 2633   class class class wbr 3867  Rel wrel 4472
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-v 2635  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-br 3868  df-opab 3922  df-xp 4473  df-rel 4474
This theorem is referenced by:  nprrel  4512  vtoclr  4515  opeliunxp2  4607  ideqg  4618  issetid  4621  fvmptss2  5414  opeliunxp2f  6041  brtpos2  6054  brdomg  6545  ctex  6550  isfi  6558  en1uniel  6601  xpdom2  6627  xpdom1g  6629  xpen  6641  isbth  6756  djudom  6863  climcl  10825  climi  10830  climrecl  10867  structex  11655
  Copyright terms: Public domain W3C validator