| Step | Hyp | Ref
| Expression |
| 1 | | simpllr 534 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → 𝐵
∈ P) |
| 2 | | simprlr 538 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → 𝐺
∈ P) |
| 3 | | mulclpr 7656 |
. . . . . . . . 9
⊢ ((𝐵 ∈ P ∧
𝐺 ∈ P)
→ (𝐵
·P 𝐺) ∈ P) |
| 4 | 1, 2, 3 | syl2anc 411 |
. . . . . . . 8
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐵 ·P 𝐺) ∈
P) |
| 5 | | simplrr 536 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → 𝐷
∈ P) |
| 6 | | simprrl 539 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → 𝑅
∈ P) |
| 7 | | mulclpr 7656 |
. . . . . . . . 9
⊢ ((𝐷 ∈ P ∧
𝑅 ∈ P)
→ (𝐷
·P 𝑅) ∈ P) |
| 8 | 5, 6, 7 | syl2anc 411 |
. . . . . . . 8
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐷 ·P 𝑅) ∈
P) |
| 9 | | addclpr 7621 |
. . . . . . . 8
⊢ (((𝐵
·P 𝐺) ∈ P ∧ (𝐷
·P 𝑅) ∈ P) → ((𝐵
·P 𝐺) +P (𝐷
·P 𝑅)) ∈ P) |
| 10 | 4, 8, 9 | syl2anc 411 |
. . . . . . 7
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐵 ·P 𝐺) +P
(𝐷
·P 𝑅)) ∈ P) |
| 11 | | simplrl 535 |
. . . . . . . 8
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → 𝐶
∈ P) |
| 12 | | mulclpr 7656 |
. . . . . . . 8
⊢ ((𝐶 ∈ P ∧
𝐺 ∈ P)
→ (𝐶
·P 𝐺) ∈ P) |
| 13 | 11, 2, 12 | syl2anc 411 |
. . . . . . 7
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐶 ·P 𝐺) ∈
P) |
| 14 | | simprll 537 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → 𝐹
∈ P) |
| 15 | | mulclpr 7656 |
. . . . . . . . 9
⊢ ((𝐵 ∈ P ∧
𝐹 ∈ P)
→ (𝐵
·P 𝐹) ∈ P) |
| 16 | 1, 14, 15 | syl2anc 411 |
. . . . . . . 8
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐵 ·P 𝐹) ∈
P) |
| 17 | | mulclpr 7656 |
. . . . . . . . 9
⊢ ((𝐶 ∈ P ∧
𝑅 ∈ P)
→ (𝐶
·P 𝑅) ∈ P) |
| 18 | 11, 6, 17 | syl2anc 411 |
. . . . . . . 8
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐶 ·P 𝑅) ∈
P) |
| 19 | | addclpr 7621 |
. . . . . . . 8
⊢ (((𝐵
·P 𝐹) ∈ P ∧ (𝐶
·P 𝑅) ∈ P) → ((𝐵
·P 𝐹) +P (𝐶
·P 𝑅)) ∈ P) |
| 20 | 16, 18, 19 | syl2anc 411 |
. . . . . . 7
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐵 ·P 𝐹) +P
(𝐶
·P 𝑅)) ∈ P) |
| 21 | | addassprg 7663 |
. . . . . . 7
⊢ ((((𝐵
·P 𝐺) +P (𝐷
·P 𝑅)) ∈ P ∧ (𝐶
·P 𝐺) ∈ P ∧ ((𝐵
·P 𝐹) +P (𝐶
·P 𝑅)) ∈ P) → ((((𝐵
·P 𝐺) +P (𝐷
·P 𝑅)) +P (𝐶
·P 𝐺)) +P ((𝐵
·P 𝐹) +P (𝐶
·P 𝑅))) = (((𝐵 ·P 𝐺) +P
(𝐷
·P 𝑅)) +P ((𝐶
·P 𝐺) +P ((𝐵
·P 𝐹) +P (𝐶
·P 𝑅))))) |
| 22 | 10, 13, 20, 21 | syl3anc 1249 |
. . . . . 6
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((((𝐵 ·P 𝐺) +P
(𝐷
·P 𝑅)) +P (𝐶
·P 𝐺)) +P ((𝐵
·P 𝐹) +P (𝐶
·P 𝑅))) = (((𝐵 ·P 𝐺) +P
(𝐷
·P 𝑅)) +P ((𝐶
·P 𝐺) +P ((𝐵
·P 𝐹) +P (𝐶
·P 𝑅))))) |
| 23 | 22 | adantr 276 |
. . . . 5
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ ((𝐴 +P
𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → ((((𝐵 ·P 𝐺) +P
(𝐷
·P 𝑅)) +P (𝐶
·P 𝐺)) +P ((𝐵
·P 𝐹) +P (𝐶
·P 𝑅))) = (((𝐵 ·P 𝐺) +P
(𝐷
·P 𝑅)) +P ((𝐶
·P 𝐺) +P ((𝐵
·P 𝐹) +P (𝐶
·P 𝑅))))) |
| 24 | | oveq2 5933 |
. . . . . . . . . . 11
⊢ ((𝐹 +P
𝑆) = (𝐺 +P 𝑅) → (𝐷 ·P (𝐹 +P
𝑆)) = (𝐷 ·P (𝐺 +P
𝑅))) |
| 25 | 24 | ad2antll 491 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ ((𝐴 +P
𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → (𝐷 ·P (𝐹 +P
𝑆)) = (𝐷 ·P (𝐺 +P
𝑅))) |
| 26 | | simprrr 540 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → 𝑆
∈ P) |
| 27 | | distrprg 7672 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ P ∧
𝐹 ∈ P
∧ 𝑆 ∈
P) → (𝐷
·P (𝐹 +P 𝑆)) = ((𝐷 ·P 𝐹) +P
(𝐷
·P 𝑆))) |
| 28 | 5, 14, 26, 27 | syl3anc 1249 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐷 ·P (𝐹 +P
𝑆)) = ((𝐷 ·P 𝐹) +P
(𝐷
·P 𝑆))) |
| 29 | 28 | adantr 276 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ ((𝐴 +P
𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → (𝐷 ·P (𝐹 +P
𝑆)) = ((𝐷 ·P 𝐹) +P
(𝐷
·P 𝑆))) |
| 30 | | distrprg 7672 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ P ∧
𝐺 ∈ P
∧ 𝑅 ∈
P) → (𝐷
·P (𝐺 +P 𝑅)) = ((𝐷 ·P 𝐺) +P
(𝐷
·P 𝑅))) |
| 31 | 5, 2, 6, 30 | syl3anc 1249 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐷 ·P (𝐺 +P
𝑅)) = ((𝐷 ·P 𝐺) +P
(𝐷
·P 𝑅))) |
| 32 | 31 | adantr 276 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ ((𝐴 +P
𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → (𝐷 ·P (𝐺 +P
𝑅)) = ((𝐷 ·P 𝐺) +P
(𝐷
·P 𝑅))) |
| 33 | 25, 29, 32 | 3eqtr3d 2237 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ ((𝐴 +P
𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → ((𝐷 ·P 𝐹) +P
(𝐷
·P 𝑆)) = ((𝐷 ·P 𝐺) +P
(𝐷
·P 𝑅))) |
| 34 | 33 | oveq2d 5941 |
. . . . . . . 8
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ ((𝐴 +P
𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → ((𝐴 ·P 𝐺) +P
((𝐷
·P 𝐹) +P (𝐷
·P 𝑆))) = ((𝐴 ·P 𝐺) +P
((𝐷
·P 𝐺) +P (𝐷
·P 𝑅)))) |
| 35 | | simplll 533 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → 𝐴
∈ P) |
| 36 | | mulclpr 7656 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ P ∧
𝐺 ∈ P)
→ (𝐴
·P 𝐺) ∈ P) |
| 37 | 35, 2, 36 | syl2anc 411 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐴 ·P 𝐺) ∈
P) |
| 38 | | mulclpr 7656 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ P ∧
𝐺 ∈ P)
→ (𝐷
·P 𝐺) ∈ P) |
| 39 | 5, 2, 38 | syl2anc 411 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐷 ·P 𝐺) ∈
P) |
| 40 | | addassprg 7663 |
. . . . . . . . . 10
⊢ (((𝐴
·P 𝐺) ∈ P ∧ (𝐷
·P 𝐺) ∈ P ∧ (𝐷
·P 𝑅) ∈ P) → (((𝐴
·P 𝐺) +P (𝐷
·P 𝐺)) +P (𝐷
·P 𝑅)) = ((𝐴 ·P 𝐺) +P
((𝐷
·P 𝐺) +P (𝐷
·P 𝑅)))) |
| 41 | 37, 39, 8, 40 | syl3anc 1249 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (((𝐴 ·P 𝐺) +P
(𝐷
·P 𝐺)) +P (𝐷
·P 𝑅)) = ((𝐴 ·P 𝐺) +P
((𝐷
·P 𝐺) +P (𝐷
·P 𝑅)))) |
| 42 | 41 | adantr 276 |
. . . . . . . 8
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ ((𝐴 +P
𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → (((𝐴 ·P 𝐺) +P
(𝐷
·P 𝐺)) +P (𝐷
·P 𝑅)) = ((𝐴 ·P 𝐺) +P
((𝐷
·P 𝐺) +P (𝐷
·P 𝑅)))) |
| 43 | | oveq1 5932 |
. . . . . . . . . . 11
⊢ ((𝐴 +P
𝐷) = (𝐵 +P 𝐶) → ((𝐴 +P 𝐷)
·P 𝐺) = ((𝐵 +P 𝐶)
·P 𝐺)) |
| 44 | 43 | ad2antrl 490 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ ((𝐴 +P
𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → ((𝐴 +P 𝐷)
·P 𝐺) = ((𝐵 +P 𝐶)
·P 𝐺)) |
| 45 | | distrprg 7672 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ P ∧
𝐴 ∈ P
∧ 𝐷 ∈
P) → (𝐺
·P (𝐴 +P 𝐷)) = ((𝐺 ·P 𝐴) +P
(𝐺
·P 𝐷))) |
| 46 | 2, 35, 5, 45 | syl3anc 1249 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐺 ·P (𝐴 +P
𝐷)) = ((𝐺 ·P 𝐴) +P
(𝐺
·P 𝐷))) |
| 47 | | addclpr 7621 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ P ∧
𝐷 ∈ P)
→ (𝐴
+P 𝐷) ∈ P) |
| 48 | 35, 5, 47 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐴 +P 𝐷) ∈
P) |
| 49 | | mulcomprg 7664 |
. . . . . . . . . . . . 13
⊢ (((𝐴 +P
𝐷) ∈ P
∧ 𝐺 ∈
P) → ((𝐴
+P 𝐷) ·P 𝐺) = (𝐺 ·P (𝐴 +P
𝐷))) |
| 50 | 48, 2, 49 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐴 +P 𝐷)
·P 𝐺) = (𝐺 ·P (𝐴 +P
𝐷))) |
| 51 | | mulcomprg 7664 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ P ∧
𝐺 ∈ P)
→ (𝐴
·P 𝐺) = (𝐺 ·P 𝐴)) |
| 52 | 35, 2, 51 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐴 ·P 𝐺) = (𝐺 ·P 𝐴)) |
| 53 | | mulcomprg 7664 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ P ∧
𝐺 ∈ P)
→ (𝐷
·P 𝐺) = (𝐺 ·P 𝐷)) |
| 54 | 5, 2, 53 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐷 ·P 𝐺) = (𝐺 ·P 𝐷)) |
| 55 | 52, 54 | oveq12d 5943 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐴 ·P 𝐺) +P
(𝐷
·P 𝐺)) = ((𝐺 ·P 𝐴) +P
(𝐺
·P 𝐷))) |
| 56 | 46, 50, 55 | 3eqtr4d 2239 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐴 +P 𝐷)
·P 𝐺) = ((𝐴 ·P 𝐺) +P
(𝐷
·P 𝐺))) |
| 57 | 56 | adantr 276 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ ((𝐴 +P
𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → ((𝐴 +P 𝐷)
·P 𝐺) = ((𝐴 ·P 𝐺) +P
(𝐷
·P 𝐺))) |
| 58 | | distrprg 7672 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) → (𝐺
·P (𝐵 +P 𝐶)) = ((𝐺 ·P 𝐵) +P
(𝐺
·P 𝐶))) |
| 59 | 2, 1, 11, 58 | syl3anc 1249 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐺 ·P (𝐵 +P
𝐶)) = ((𝐺 ·P 𝐵) +P
(𝐺
·P 𝐶))) |
| 60 | | addclpr 7621 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ P ∧
𝐶 ∈ P)
→ (𝐵
+P 𝐶) ∈ P) |
| 61 | 1, 11, 60 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐵 +P 𝐶) ∈
P) |
| 62 | | mulcomprg 7664 |
. . . . . . . . . . . . 13
⊢ (((𝐵 +P
𝐶) ∈ P
∧ 𝐺 ∈
P) → ((𝐵
+P 𝐶) ·P 𝐺) = (𝐺 ·P (𝐵 +P
𝐶))) |
| 63 | 61, 2, 62 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐵 +P 𝐶)
·P 𝐺) = (𝐺 ·P (𝐵 +P
𝐶))) |
| 64 | | mulcomprg 7664 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ P ∧
𝐺 ∈ P)
→ (𝐵
·P 𝐺) = (𝐺 ·P 𝐵)) |
| 65 | 1, 2, 64 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐵 ·P 𝐺) = (𝐺 ·P 𝐵)) |
| 66 | | mulcomprg 7664 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 ∈ P ∧
𝐺 ∈ P)
→ (𝐶
·P 𝐺) = (𝐺 ·P 𝐶)) |
| 67 | 11, 2, 66 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐶 ·P 𝐺) = (𝐺 ·P 𝐶)) |
| 68 | 65, 67 | oveq12d 5943 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐵 ·P 𝐺) +P
(𝐶
·P 𝐺)) = ((𝐺 ·P 𝐵) +P
(𝐺
·P 𝐶))) |
| 69 | 59, 63, 68 | 3eqtr4d 2239 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐵 +P 𝐶)
·P 𝐺) = ((𝐵 ·P 𝐺) +P
(𝐶
·P 𝐺))) |
| 70 | 69 | adantr 276 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ ((𝐴 +P
𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → ((𝐵 +P 𝐶)
·P 𝐺) = ((𝐵 ·P 𝐺) +P
(𝐶
·P 𝐺))) |
| 71 | 44, 57, 70 | 3eqtr3d 2237 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ ((𝐴 +P
𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → ((𝐴 ·P 𝐺) +P
(𝐷
·P 𝐺)) = ((𝐵 ·P 𝐺) +P
(𝐶
·P 𝐺))) |
| 72 | 71 | oveq1d 5940 |
. . . . . . . 8
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ ((𝐴 +P
𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → (((𝐴 ·P 𝐺) +P
(𝐷
·P 𝐺)) +P (𝐷
·P 𝑅)) = (((𝐵 ·P 𝐺) +P
(𝐶
·P 𝐺)) +P (𝐷
·P 𝑅))) |
| 73 | 34, 42, 72 | 3eqtr2d 2235 |
. . . . . . 7
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ ((𝐴 +P
𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → ((𝐴 ·P 𝐺) +P
((𝐷
·P 𝐹) +P (𝐷
·P 𝑆))) = (((𝐵 ·P 𝐺) +P
(𝐶
·P 𝐺)) +P (𝐷
·P 𝑅))) |
| 74 | | mulclpr 7656 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ P ∧
𝐹 ∈ P)
→ (𝐷
·P 𝐹) ∈ P) |
| 75 | 5, 14, 74 | syl2anc 411 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐷 ·P 𝐹) ∈
P) |
| 76 | | mulclpr 7656 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ P ∧
𝑆 ∈ P)
→ (𝐷
·P 𝑆) ∈ P) |
| 77 | 5, 26, 76 | syl2anc 411 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐷 ·P 𝑆) ∈
P) |
| 78 | | addcomprg 7662 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ (𝑥
+P 𝑦) = (𝑦 +P 𝑥)) |
| 79 | 78 | adantl 277 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ (𝑥 ∈ P ∧
𝑦 ∈ P))
→ (𝑥
+P 𝑦) = (𝑦 +P 𝑥)) |
| 80 | | addassprg 7663 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P) → ((𝑥
+P 𝑦) +P 𝑧) = (𝑥 +P (𝑦 +P
𝑧))) |
| 81 | 80 | adantl 277 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ (𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑧 ∈
P)) → ((𝑥 +P 𝑦) +P
𝑧) = (𝑥 +P (𝑦 +P
𝑧))) |
| 82 | 37, 75, 77, 79, 81 | caov12d 6109 |
. . . . . . . 8
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐴 ·P 𝐺) +P
((𝐷
·P 𝐹) +P (𝐷
·P 𝑆))) = ((𝐷 ·P 𝐹) +P
((𝐴
·P 𝐺) +P (𝐷
·P 𝑆)))) |
| 83 | 82 | adantr 276 |
. . . . . . 7
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ ((𝐴 +P
𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → ((𝐴 ·P 𝐺) +P
((𝐷
·P 𝐹) +P (𝐷
·P 𝑆))) = ((𝐷 ·P 𝐹) +P
((𝐴
·P 𝐺) +P (𝐷
·P 𝑆)))) |
| 84 | 4, 13, 8, 79, 81 | caov32d 6108 |
. . . . . . . 8
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (((𝐵 ·P 𝐺) +P
(𝐶
·P 𝐺)) +P (𝐷
·P 𝑅)) = (((𝐵 ·P 𝐺) +P
(𝐷
·P 𝑅)) +P (𝐶
·P 𝐺))) |
| 85 | 84 | adantr 276 |
. . . . . . 7
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ ((𝐴 +P
𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → (((𝐵 ·P 𝐺) +P
(𝐶
·P 𝐺)) +P (𝐷
·P 𝑅)) = (((𝐵 ·P 𝐺) +P
(𝐷
·P 𝑅)) +P (𝐶
·P 𝐺))) |
| 86 | 73, 83, 85 | 3eqtr3d 2237 |
. . . . . 6
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ ((𝐴 +P
𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → ((𝐷 ·P 𝐹) +P
((𝐴
·P 𝐺) +P (𝐷
·P 𝑆))) = (((𝐵 ·P 𝐺) +P
(𝐷
·P 𝑅)) +P (𝐶
·P 𝐺))) |
| 87 | 86 | oveq1d 5940 |
. . . . 5
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ ((𝐴 +P
𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → (((𝐷 ·P 𝐹) +P
((𝐴
·P 𝐺) +P (𝐷
·P 𝑆))) +P ((𝐵
·P 𝐹) +P (𝐶
·P 𝑅))) = ((((𝐵 ·P 𝐺) +P
(𝐷
·P 𝑅)) +P (𝐶
·P 𝐺)) +P ((𝐵
·P 𝐹) +P (𝐶
·P 𝑅)))) |
| 88 | | oveq1 5932 |
. . . . . . . . . . . 12
⊢ ((𝐴 +P
𝐷) = (𝐵 +P 𝐶) → ((𝐴 +P 𝐷)
·P 𝐹) = ((𝐵 +P 𝐶)
·P 𝐹)) |
| 89 | 88 | adantl 277 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ (𝐴 +P
𝐷) = (𝐵 +P 𝐶)) → ((𝐴 +P 𝐷)
·P 𝐹) = ((𝐵 +P 𝐶)
·P 𝐹)) |
| 90 | | distrprg 7672 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ P ∧
𝐴 ∈ P
∧ 𝐷 ∈
P) → (𝐹
·P (𝐴 +P 𝐷)) = ((𝐹 ·P 𝐴) +P
(𝐹
·P 𝐷))) |
| 91 | 14, 35, 5, 90 | syl3anc 1249 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐹 ·P (𝐴 +P
𝐷)) = ((𝐹 ·P 𝐴) +P
(𝐹
·P 𝐷))) |
| 92 | | mulcomprg 7664 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 +P
𝐷) ∈ P
∧ 𝐹 ∈
P) → ((𝐴
+P 𝐷) ·P 𝐹) = (𝐹 ·P (𝐴 +P
𝐷))) |
| 93 | 48, 14, 92 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐴 +P 𝐷)
·P 𝐹) = (𝐹 ·P (𝐴 +P
𝐷))) |
| 94 | | mulcomprg 7664 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ P ∧
𝐹 ∈ P)
→ (𝐴
·P 𝐹) = (𝐹 ·P 𝐴)) |
| 95 | 35, 14, 94 | syl2anc 411 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐴 ·P 𝐹) = (𝐹 ·P 𝐴)) |
| 96 | | mulcomprg 7664 |
. . . . . . . . . . . . . . 15
⊢ ((𝐷 ∈ P ∧
𝐹 ∈ P)
→ (𝐷
·P 𝐹) = (𝐹 ·P 𝐷)) |
| 97 | 5, 14, 96 | syl2anc 411 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐷 ·P 𝐹) = (𝐹 ·P 𝐷)) |
| 98 | 95, 97 | oveq12d 5943 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐴 ·P 𝐹) +P
(𝐷
·P 𝐹)) = ((𝐹 ·P 𝐴) +P
(𝐹
·P 𝐷))) |
| 99 | 91, 93, 98 | 3eqtr4d 2239 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐴 +P 𝐷)
·P 𝐹) = ((𝐴 ·P 𝐹) +P
(𝐷
·P 𝐹))) |
| 100 | 99 | adantr 276 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ (𝐴 +P
𝐷) = (𝐵 +P 𝐶)) → ((𝐴 +P 𝐷)
·P 𝐹) = ((𝐴 ·P 𝐹) +P
(𝐷
·P 𝐹))) |
| 101 | | distrprg 7672 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) → (𝐹
·P (𝐵 +P 𝐶)) = ((𝐹 ·P 𝐵) +P
(𝐹
·P 𝐶))) |
| 102 | 14, 1, 11, 101 | syl3anc 1249 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐹 ·P (𝐵 +P
𝐶)) = ((𝐹 ·P 𝐵) +P
(𝐹
·P 𝐶))) |
| 103 | | mulcomprg 7664 |
. . . . . . . . . . . . . 14
⊢ (((𝐵 +P
𝐶) ∈ P
∧ 𝐹 ∈
P) → ((𝐵
+P 𝐶) ·P 𝐹) = (𝐹 ·P (𝐵 +P
𝐶))) |
| 104 | 61, 14, 103 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐵 +P 𝐶)
·P 𝐹) = (𝐹 ·P (𝐵 +P
𝐶))) |
| 105 | | mulcomprg 7664 |
. . . . . . . . . . . . . . 15
⊢ ((𝐵 ∈ P ∧
𝐹 ∈ P)
→ (𝐵
·P 𝐹) = (𝐹 ·P 𝐵)) |
| 106 | 1, 14, 105 | syl2anc 411 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐵 ·P 𝐹) = (𝐹 ·P 𝐵)) |
| 107 | | mulcomprg 7664 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 ∈ P ∧
𝐹 ∈ P)
→ (𝐶
·P 𝐹) = (𝐹 ·P 𝐶)) |
| 108 | 11, 14, 107 | syl2anc 411 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐶 ·P 𝐹) = (𝐹 ·P 𝐶)) |
| 109 | 106, 108 | oveq12d 5943 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐵 ·P 𝐹) +P
(𝐶
·P 𝐹)) = ((𝐹 ·P 𝐵) +P
(𝐹
·P 𝐶))) |
| 110 | 102, 104,
109 | 3eqtr4d 2239 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐵 +P 𝐶)
·P 𝐹) = ((𝐵 ·P 𝐹) +P
(𝐶
·P 𝐹))) |
| 111 | 110 | adantr 276 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ (𝐴 +P
𝐷) = (𝐵 +P 𝐶)) → ((𝐵 +P 𝐶)
·P 𝐹) = ((𝐵 ·P 𝐹) +P
(𝐶
·P 𝐹))) |
| 112 | 89, 100, 111 | 3eqtr3d 2237 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ (𝐴 +P
𝐷) = (𝐵 +P 𝐶)) → ((𝐴 ·P 𝐹) +P
(𝐷
·P 𝐹)) = ((𝐵 ·P 𝐹) +P
(𝐶
·P 𝐹))) |
| 113 | 112 | oveq1d 5940 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ (𝐴 +P
𝐷) = (𝐵 +P 𝐶)) → (((𝐴 ·P 𝐹) +P
(𝐷
·P 𝐹)) +P (𝐶
·P 𝑆)) = (((𝐵 ·P 𝐹) +P
(𝐶
·P 𝐹)) +P (𝐶
·P 𝑆))) |
| 114 | 113 | adantrr 479 |
. . . . . . . 8
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ ((𝐴 +P
𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → (((𝐴 ·P 𝐹) +P
(𝐷
·P 𝐹)) +P (𝐶
·P 𝑆)) = (((𝐵 ·P 𝐹) +P
(𝐶
·P 𝐹)) +P (𝐶
·P 𝑆))) |
| 115 | | mulclpr 7656 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ P ∧
𝐹 ∈ P)
→ (𝐶
·P 𝐹) ∈ P) |
| 116 | 11, 14, 115 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐶 ·P 𝐹) ∈
P) |
| 117 | | mulclpr 7656 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ P ∧
𝑆 ∈ P)
→ (𝐶
·P 𝑆) ∈ P) |
| 118 | 11, 26, 117 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐶 ·P 𝑆) ∈
P) |
| 119 | | addassprg 7663 |
. . . . . . . . . . . 12
⊢ (((𝐵
·P 𝐹) ∈ P ∧ (𝐶
·P 𝐹) ∈ P ∧ (𝐶
·P 𝑆) ∈ P) → (((𝐵
·P 𝐹) +P (𝐶
·P 𝐹)) +P (𝐶
·P 𝑆)) = ((𝐵 ·P 𝐹) +P
((𝐶
·P 𝐹) +P (𝐶
·P 𝑆)))) |
| 120 | 16, 116, 118, 119 | syl3anc 1249 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (((𝐵 ·P 𝐹) +P
(𝐶
·P 𝐹)) +P (𝐶
·P 𝑆)) = ((𝐵 ·P 𝐹) +P
((𝐶
·P 𝐹) +P (𝐶
·P 𝑆)))) |
| 121 | 120 | adantr 276 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ (𝐹 +P
𝑆) = (𝐺 +P 𝑅)) → (((𝐵 ·P 𝐹) +P
(𝐶
·P 𝐹)) +P (𝐶
·P 𝑆)) = ((𝐵 ·P 𝐹) +P
((𝐶
·P 𝐹) +P (𝐶
·P 𝑆)))) |
| 122 | | oveq2 5933 |
. . . . . . . . . . . . 13
⊢ ((𝐹 +P
𝑆) = (𝐺 +P 𝑅) → (𝐶 ·P (𝐹 +P
𝑆)) = (𝐶 ·P (𝐺 +P
𝑅))) |
| 123 | 122 | adantl 277 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ (𝐹 +P
𝑆) = (𝐺 +P 𝑅)) → (𝐶 ·P (𝐹 +P
𝑆)) = (𝐶 ·P (𝐺 +P
𝑅))) |
| 124 | | distrprg 7672 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 ∈ P ∧
𝐹 ∈ P
∧ 𝑆 ∈
P) → (𝐶
·P (𝐹 +P 𝑆)) = ((𝐶 ·P 𝐹) +P
(𝐶
·P 𝑆))) |
| 125 | 11, 14, 26, 124 | syl3anc 1249 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐶 ·P (𝐹 +P
𝑆)) = ((𝐶 ·P 𝐹) +P
(𝐶
·P 𝑆))) |
| 126 | 125 | adantr 276 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ (𝐹 +P
𝑆) = (𝐺 +P 𝑅)) → (𝐶 ·P (𝐹 +P
𝑆)) = ((𝐶 ·P 𝐹) +P
(𝐶
·P 𝑆))) |
| 127 | | distrprg 7672 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 ∈ P ∧
𝐺 ∈ P
∧ 𝑅 ∈
P) → (𝐶
·P (𝐺 +P 𝑅)) = ((𝐶 ·P 𝐺) +P
(𝐶
·P 𝑅))) |
| 128 | 11, 2, 6, 127 | syl3anc 1249 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐶 ·P (𝐺 +P
𝑅)) = ((𝐶 ·P 𝐺) +P
(𝐶
·P 𝑅))) |
| 129 | 128 | adantr 276 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ (𝐹 +P
𝑆) = (𝐺 +P 𝑅)) → (𝐶 ·P (𝐺 +P
𝑅)) = ((𝐶 ·P 𝐺) +P
(𝐶
·P 𝑅))) |
| 130 | 123, 126,
129 | 3eqtr3d 2237 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ (𝐹 +P
𝑆) = (𝐺 +P 𝑅)) → ((𝐶 ·P 𝐹) +P
(𝐶
·P 𝑆)) = ((𝐶 ·P 𝐺) +P
(𝐶
·P 𝑅))) |
| 131 | 130 | oveq2d 5941 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ (𝐹 +P
𝑆) = (𝐺 +P 𝑅)) → ((𝐵 ·P 𝐹) +P
((𝐶
·P 𝐹) +P (𝐶
·P 𝑆))) = ((𝐵 ·P 𝐹) +P
((𝐶
·P 𝐺) +P (𝐶
·P 𝑅)))) |
| 132 | 121, 131 | eqtrd 2229 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ (𝐹 +P
𝑆) = (𝐺 +P 𝑅)) → (((𝐵 ·P 𝐹) +P
(𝐶
·P 𝐹)) +P (𝐶
·P 𝑆)) = ((𝐵 ·P 𝐹) +P
((𝐶
·P 𝐺) +P (𝐶
·P 𝑅)))) |
| 133 | 132 | adantrl 478 |
. . . . . . . 8
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ ((𝐴 +P
𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → (((𝐵 ·P 𝐹) +P
(𝐶
·P 𝐹)) +P (𝐶
·P 𝑆)) = ((𝐵 ·P 𝐹) +P
((𝐶
·P 𝐺) +P (𝐶
·P 𝑅)))) |
| 134 | 114, 133 | eqtrd 2229 |
. . . . . . 7
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ ((𝐴 +P
𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → (((𝐴 ·P 𝐹) +P
(𝐷
·P 𝐹)) +P (𝐶
·P 𝑆)) = ((𝐵 ·P 𝐹) +P
((𝐶
·P 𝐺) +P (𝐶
·P 𝑅)))) |
| 135 | | mulclpr 7656 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ P ∧
𝐹 ∈ P)
→ (𝐴
·P 𝐹) ∈ P) |
| 136 | 35, 14, 135 | syl2anc 411 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (𝐴 ·P 𝐹) ∈
P) |
| 137 | 136, 75, 118, 79, 81 | caov32d 6108 |
. . . . . . . 8
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (((𝐴 ·P 𝐹) +P
(𝐷
·P 𝐹)) +P (𝐶
·P 𝑆)) = (((𝐴 ·P 𝐹) +P
(𝐶
·P 𝑆)) +P (𝐷
·P 𝐹))) |
| 138 | 137 | adantr 276 |
. . . . . . 7
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ ((𝐴 +P
𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → (((𝐴 ·P 𝐹) +P
(𝐷
·P 𝐹)) +P (𝐶
·P 𝑆)) = (((𝐴 ·P 𝐹) +P
(𝐶
·P 𝑆)) +P (𝐷
·P 𝐹))) |
| 139 | 16, 13, 18, 79, 81 | caov12d 6109 |
. . . . . . . 8
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐵 ·P 𝐹) +P
((𝐶
·P 𝐺) +P (𝐶
·P 𝑅))) = ((𝐶 ·P 𝐺) +P
((𝐵
·P 𝐹) +P (𝐶
·P 𝑅)))) |
| 140 | 139 | adantr 276 |
. . . . . . 7
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ ((𝐴 +P
𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → ((𝐵 ·P 𝐹) +P
((𝐶
·P 𝐺) +P (𝐶
·P 𝑅))) = ((𝐶 ·P 𝐺) +P
((𝐵
·P 𝐹) +P (𝐶
·P 𝑅)))) |
| 141 | 134, 138,
140 | 3eqtr3d 2237 |
. . . . . 6
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ ((𝐴 +P
𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → (((𝐴 ·P 𝐹) +P
(𝐶
·P 𝑆)) +P (𝐷
·P 𝐹)) = ((𝐶 ·P 𝐺) +P
((𝐵
·P 𝐹) +P (𝐶
·P 𝑅)))) |
| 142 | 141 | oveq2d 5941 |
. . . . 5
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ ((𝐴 +P
𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → (((𝐵 ·P 𝐺) +P
(𝐷
·P 𝑅)) +P (((𝐴
·P 𝐹) +P (𝐶
·P 𝑆)) +P (𝐷
·P 𝐹))) = (((𝐵 ·P 𝐺) +P
(𝐷
·P 𝑅)) +P ((𝐶
·P 𝐺) +P ((𝐵
·P 𝐹) +P (𝐶
·P 𝑅))))) |
| 143 | 23, 87, 142 | 3eqtr4rd 2240 |
. . . 4
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ ((𝐴 +P
𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → (((𝐵 ·P 𝐺) +P
(𝐷
·P 𝑅)) +P (((𝐴
·P 𝐹) +P (𝐶
·P 𝑆)) +P (𝐷
·P 𝐹))) = (((𝐷 ·P 𝐹) +P
((𝐴
·P 𝐺) +P (𝐷
·P 𝑆))) +P ((𝐵
·P 𝐹) +P (𝐶
·P 𝑅)))) |
| 144 | | addclpr 7621 |
. . . . . . 7
⊢ (((𝐴
·P 𝐹) ∈ P ∧ (𝐶
·P 𝑆) ∈ P) → ((𝐴
·P 𝐹) +P (𝐶
·P 𝑆)) ∈ P) |
| 145 | 136, 118,
144 | syl2anc 411 |
. . . . . 6
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐴 ·P 𝐹) +P
(𝐶
·P 𝑆)) ∈ P) |
| 146 | 10, 145, 75, 79, 81 | caov13d 6111 |
. . . . 5
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (((𝐵 ·P 𝐺) +P
(𝐷
·P 𝑅)) +P (((𝐴
·P 𝐹) +P (𝐶
·P 𝑆)) +P (𝐷
·P 𝐹))) = ((𝐷 ·P 𝐹) +P
(((𝐴
·P 𝐹) +P (𝐶
·P 𝑆)) +P ((𝐵
·P 𝐺) +P (𝐷
·P 𝑅))))) |
| 147 | 146 | adantr 276 |
. . . 4
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ ((𝐴 +P
𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → (((𝐵 ·P 𝐺) +P
(𝐷
·P 𝑅)) +P (((𝐴
·P 𝐹) +P (𝐶
·P 𝑆)) +P (𝐷
·P 𝐹))) = ((𝐷 ·P 𝐹) +P
(((𝐴
·P 𝐹) +P (𝐶
·P 𝑆)) +P ((𝐵
·P 𝐺) +P (𝐷
·P 𝑅))))) |
| 148 | | addclpr 7621 |
. . . . . . 7
⊢ (((𝐴
·P 𝐺) ∈ P ∧ (𝐷
·P 𝑆) ∈ P) → ((𝐴
·P 𝐺) +P (𝐷
·P 𝑆)) ∈ P) |
| 149 | 37, 77, 148 | syl2anc 411 |
. . . . . 6
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐴 ·P 𝐺) +P
(𝐷
·P 𝑆)) ∈ P) |
| 150 | | addassprg 7663 |
. . . . . 6
⊢ (((𝐷
·P 𝐹) ∈ P ∧ ((𝐴
·P 𝐺) +P (𝐷
·P 𝑆)) ∈ P ∧ ((𝐵
·P 𝐹) +P (𝐶
·P 𝑅)) ∈ P) → (((𝐷
·P 𝐹) +P ((𝐴
·P 𝐺) +P (𝐷
·P 𝑆))) +P ((𝐵
·P 𝐹) +P (𝐶
·P 𝑅))) = ((𝐷 ·P 𝐹) +P
(((𝐴
·P 𝐺) +P (𝐷
·P 𝑆)) +P ((𝐵
·P 𝐹) +P (𝐶
·P 𝑅))))) |
| 151 | 75, 149, 20, 150 | syl3anc 1249 |
. . . . 5
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (((𝐷 ·P 𝐹) +P
((𝐴
·P 𝐺) +P (𝐷
·P 𝑆))) +P ((𝐵
·P 𝐹) +P (𝐶
·P 𝑅))) = ((𝐷 ·P 𝐹) +P
(((𝐴
·P 𝐺) +P (𝐷
·P 𝑆)) +P ((𝐵
·P 𝐹) +P (𝐶
·P 𝑅))))) |
| 152 | 151 | adantr 276 |
. . . 4
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ ((𝐴 +P
𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → (((𝐷 ·P 𝐹) +P
((𝐴
·P 𝐺) +P (𝐷
·P 𝑆))) +P ((𝐵
·P 𝐹) +P (𝐶
·P 𝑅))) = ((𝐷 ·P 𝐹) +P
(((𝐴
·P 𝐺) +P (𝐷
·P 𝑆)) +P ((𝐵
·P 𝐹) +P (𝐶
·P 𝑅))))) |
| 153 | 143, 147,
152 | 3eqtr3d 2237 |
. . 3
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ ((𝐴 +P
𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → ((𝐷 ·P 𝐹) +P
(((𝐴
·P 𝐹) +P (𝐶
·P 𝑆)) +P ((𝐵
·P 𝐺) +P (𝐷
·P 𝑅)))) = ((𝐷 ·P 𝐹) +P
(((𝐴
·P 𝐺) +P (𝐷
·P 𝑆)) +P ((𝐵
·P 𝐹) +P (𝐶
·P 𝑅))))) |
| 154 | | addclpr 7621 |
. . . . . . 7
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ (𝑥
+P 𝑦) ∈ P) |
| 155 | 154 | adantl 277 |
. . . . . 6
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ (𝑥 ∈ P ∧
𝑦 ∈ P))
→ (𝑥
+P 𝑦) ∈ P) |
| 156 | 136, 118,
4, 79, 81, 8, 155 | caov4d 6112 |
. . . . 5
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (((𝐴 ·P 𝐹) +P
(𝐶
·P 𝑆)) +P ((𝐵
·P 𝐺) +P (𝐷
·P 𝑅))) = (((𝐴 ·P 𝐹) +P
(𝐵
·P 𝐺)) +P ((𝐶
·P 𝑆) +P (𝐷
·P 𝑅)))) |
| 157 | 156 | oveq2d 5941 |
. . . 4
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐷 ·P 𝐹) +P
(((𝐴
·P 𝐹) +P (𝐶
·P 𝑆)) +P ((𝐵
·P 𝐺) +P (𝐷
·P 𝑅)))) = ((𝐷 ·P 𝐹) +P
(((𝐴
·P 𝐹) +P (𝐵
·P 𝐺)) +P ((𝐶
·P 𝑆) +P (𝐷
·P 𝑅))))) |
| 158 | 157 | adantr 276 |
. . 3
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ ((𝐴 +P
𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → ((𝐷 ·P 𝐹) +P
(((𝐴
·P 𝐹) +P (𝐶
·P 𝑆)) +P ((𝐵
·P 𝐺) +P (𝐷
·P 𝑅)))) = ((𝐷 ·P 𝐹) +P
(((𝐴
·P 𝐹) +P (𝐵
·P 𝐺)) +P ((𝐶
·P 𝑆) +P (𝐷
·P 𝑅))))) |
| 159 | 37, 77, 16, 79, 81, 18, 155 | caov42d 6114 |
. . . . 5
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (((𝐴 ·P 𝐺) +P
(𝐷
·P 𝑆)) +P ((𝐵
·P 𝐹) +P (𝐶
·P 𝑅))) = (((𝐴 ·P 𝐺) +P
(𝐵
·P 𝐹)) +P ((𝐶
·P 𝑅) +P (𝐷
·P 𝑆)))) |
| 160 | 159 | oveq2d 5941 |
. . . 4
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → ((𝐷 ·P 𝐹) +P
(((𝐴
·P 𝐺) +P (𝐷
·P 𝑆)) +P ((𝐵
·P 𝐹) +P (𝐶
·P 𝑅)))) = ((𝐷 ·P 𝐹) +P
(((𝐴
·P 𝐺) +P (𝐵
·P 𝐹)) +P ((𝐶
·P 𝑅) +P (𝐷
·P 𝑆))))) |
| 161 | 160 | adantr 276 |
. . 3
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ ((𝐴 +P
𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → ((𝐷 ·P 𝐹) +P
(((𝐴
·P 𝐺) +P (𝐷
·P 𝑆)) +P ((𝐵
·P 𝐹) +P (𝐶
·P 𝑅)))) = ((𝐷 ·P 𝐹) +P
(((𝐴
·P 𝐺) +P (𝐵
·P 𝐹)) +P ((𝐶
·P 𝑅) +P (𝐷
·P 𝑆))))) |
| 162 | 153, 158,
161 | 3eqtr3d 2237 |
. 2
⊢
(((((𝐴 ∈
P ∧ 𝐵
∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧
((𝐹 ∈ P
∧ 𝐺 ∈
P) ∧ (𝑅
∈ P ∧ 𝑆 ∈ P))) ∧ ((𝐴 +P
𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → ((𝐷 ·P 𝐹) +P
(((𝐴
·P 𝐹) +P (𝐵
·P 𝐺)) +P ((𝐶
·P 𝑆) +P (𝐷
·P 𝑅)))) = ((𝐷 ·P 𝐹) +P
(((𝐴
·P 𝐺) +P (𝐵
·P 𝐹)) +P ((𝐶
·P 𝑅) +P (𝐷
·P 𝑆))))) |
| 163 | 162 | ex 115 |
1
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧
(𝑅 ∈ P
∧ 𝑆 ∈
P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐷 ·P 𝐹) +P
(((𝐴
·P 𝐹) +P (𝐵
·P 𝐺)) +P ((𝐶
·P 𝑆) +P (𝐷
·P 𝑅)))) = ((𝐷 ·P 𝐹) +P
(((𝐴
·P 𝐺) +P (𝐵
·P 𝐹)) +P ((𝐶
·P 𝑅) +P (𝐷
·P 𝑆)))))) |