ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcmpblnrlemg GIF version

Theorem mulcmpblnrlemg 7702
Description: Lemma used in lemma showing compatibility of multiplication. (Contributed by Jim Kingdon, 1-Jan-2020.)
Assertion
Ref Expression
mulcmpblnrlemg ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆))))))

Proof of Theorem mulcmpblnrlemg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpllr 529 . . . . . . . . 9 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝐵P)
2 simprlr 533 . . . . . . . . 9 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝐺P)
3 mulclpr 7534 . . . . . . . . 9 ((𝐵P𝐺P) → (𝐵 ·P 𝐺) ∈ P)
41, 2, 3syl2anc 409 . . . . . . . 8 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐵 ·P 𝐺) ∈ P)
5 simplrr 531 . . . . . . . . 9 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝐷P)
6 simprrl 534 . . . . . . . . 9 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝑅P)
7 mulclpr 7534 . . . . . . . . 9 ((𝐷P𝑅P) → (𝐷 ·P 𝑅) ∈ P)
85, 6, 7syl2anc 409 . . . . . . . 8 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐷 ·P 𝑅) ∈ P)
9 addclpr 7499 . . . . . . . 8 (((𝐵 ·P 𝐺) ∈ P ∧ (𝐷 ·P 𝑅) ∈ P) → ((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) ∈ P)
104, 8, 9syl2anc 409 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) ∈ P)
11 simplrl 530 . . . . . . . 8 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝐶P)
12 mulclpr 7534 . . . . . . . 8 ((𝐶P𝐺P) → (𝐶 ·P 𝐺) ∈ P)
1311, 2, 12syl2anc 409 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐶 ·P 𝐺) ∈ P)
14 simprll 532 . . . . . . . . 9 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝐹P)
15 mulclpr 7534 . . . . . . . . 9 ((𝐵P𝐹P) → (𝐵 ·P 𝐹) ∈ P)
161, 14, 15syl2anc 409 . . . . . . . 8 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐵 ·P 𝐹) ∈ P)
17 mulclpr 7534 . . . . . . . . 9 ((𝐶P𝑅P) → (𝐶 ·P 𝑅) ∈ P)
1811, 6, 17syl2anc 409 . . . . . . . 8 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐶 ·P 𝑅) ∈ P)
19 addclpr 7499 . . . . . . . 8 (((𝐵 ·P 𝐹) ∈ P ∧ (𝐶 ·P 𝑅) ∈ P) → ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅)) ∈ P)
2016, 18, 19syl2anc 409 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅)) ∈ P)
21 addassprg 7541 . . . . . . 7 ((((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) ∈ P ∧ (𝐶 ·P 𝐺) ∈ P ∧ ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅)) ∈ P) → ((((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P (𝐶 ·P 𝐺)) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))) = (((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P ((𝐶 ·P 𝐺) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅)))))
2210, 13, 20, 21syl3anc 1233 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P (𝐶 ·P 𝐺)) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))) = (((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P ((𝐶 ·P 𝐺) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅)))))
2322adantr 274 . . . . 5 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → ((((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P (𝐶 ·P 𝐺)) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))) = (((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P ((𝐶 ·P 𝐺) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅)))))
24 oveq2 5861 . . . . . . . . . . 11 ((𝐹 +P 𝑆) = (𝐺 +P 𝑅) → (𝐷 ·P (𝐹 +P 𝑆)) = (𝐷 ·P (𝐺 +P 𝑅)))
2524ad2antll 488 . . . . . . . . . 10 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → (𝐷 ·P (𝐹 +P 𝑆)) = (𝐷 ·P (𝐺 +P 𝑅)))
26 simprrr 535 . . . . . . . . . . . 12 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝑆P)
27 distrprg 7550 . . . . . . . . . . . 12 ((𝐷P𝐹P𝑆P) → (𝐷 ·P (𝐹 +P 𝑆)) = ((𝐷 ·P 𝐹) +P (𝐷 ·P 𝑆)))
285, 14, 26, 27syl3anc 1233 . . . . . . . . . . 11 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐷 ·P (𝐹 +P 𝑆)) = ((𝐷 ·P 𝐹) +P (𝐷 ·P 𝑆)))
2928adantr 274 . . . . . . . . . 10 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → (𝐷 ·P (𝐹 +P 𝑆)) = ((𝐷 ·P 𝐹) +P (𝐷 ·P 𝑆)))
30 distrprg 7550 . . . . . . . . . . . 12 ((𝐷P𝐺P𝑅P) → (𝐷 ·P (𝐺 +P 𝑅)) = ((𝐷 ·P 𝐺) +P (𝐷 ·P 𝑅)))
315, 2, 6, 30syl3anc 1233 . . . . . . . . . . 11 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐷 ·P (𝐺 +P 𝑅)) = ((𝐷 ·P 𝐺) +P (𝐷 ·P 𝑅)))
3231adantr 274 . . . . . . . . . 10 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → (𝐷 ·P (𝐺 +P 𝑅)) = ((𝐷 ·P 𝐺) +P (𝐷 ·P 𝑅)))
3325, 29, 323eqtr3d 2211 . . . . . . . . 9 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → ((𝐷 ·P 𝐹) +P (𝐷 ·P 𝑆)) = ((𝐷 ·P 𝐺) +P (𝐷 ·P 𝑅)))
3433oveq2d 5869 . . . . . . . 8 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → ((𝐴 ·P 𝐺) +P ((𝐷 ·P 𝐹) +P (𝐷 ·P 𝑆))) = ((𝐴 ·P 𝐺) +P ((𝐷 ·P 𝐺) +P (𝐷 ·P 𝑅))))
35 simplll 528 . . . . . . . . . . 11 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝐴P)
36 mulclpr 7534 . . . . . . . . . . 11 ((𝐴P𝐺P) → (𝐴 ·P 𝐺) ∈ P)
3735, 2, 36syl2anc 409 . . . . . . . . . 10 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐴 ·P 𝐺) ∈ P)
38 mulclpr 7534 . . . . . . . . . . 11 ((𝐷P𝐺P) → (𝐷 ·P 𝐺) ∈ P)
395, 2, 38syl2anc 409 . . . . . . . . . 10 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐷 ·P 𝐺) ∈ P)
40 addassprg 7541 . . . . . . . . . 10 (((𝐴 ·P 𝐺) ∈ P ∧ (𝐷 ·P 𝐺) ∈ P ∧ (𝐷 ·P 𝑅) ∈ P) → (((𝐴 ·P 𝐺) +P (𝐷 ·P 𝐺)) +P (𝐷 ·P 𝑅)) = ((𝐴 ·P 𝐺) +P ((𝐷 ·P 𝐺) +P (𝐷 ·P 𝑅))))
4137, 39, 8, 40syl3anc 1233 . . . . . . . . 9 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 ·P 𝐺) +P (𝐷 ·P 𝐺)) +P (𝐷 ·P 𝑅)) = ((𝐴 ·P 𝐺) +P ((𝐷 ·P 𝐺) +P (𝐷 ·P 𝑅))))
4241adantr 274 . . . . . . . 8 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → (((𝐴 ·P 𝐺) +P (𝐷 ·P 𝐺)) +P (𝐷 ·P 𝑅)) = ((𝐴 ·P 𝐺) +P ((𝐷 ·P 𝐺) +P (𝐷 ·P 𝑅))))
43 oveq1 5860 . . . . . . . . . . 11 ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) → ((𝐴 +P 𝐷) ·P 𝐺) = ((𝐵 +P 𝐶) ·P 𝐺))
4443ad2antrl 487 . . . . . . . . . 10 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → ((𝐴 +P 𝐷) ·P 𝐺) = ((𝐵 +P 𝐶) ·P 𝐺))
45 distrprg 7550 . . . . . . . . . . . . 13 ((𝐺P𝐴P𝐷P) → (𝐺 ·P (𝐴 +P 𝐷)) = ((𝐺 ·P 𝐴) +P (𝐺 ·P 𝐷)))
462, 35, 5, 45syl3anc 1233 . . . . . . . . . . . 12 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐺 ·P (𝐴 +P 𝐷)) = ((𝐺 ·P 𝐴) +P (𝐺 ·P 𝐷)))
47 addclpr 7499 . . . . . . . . . . . . . 14 ((𝐴P𝐷P) → (𝐴 +P 𝐷) ∈ P)
4835, 5, 47syl2anc 409 . . . . . . . . . . . . 13 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐴 +P 𝐷) ∈ P)
49 mulcomprg 7542 . . . . . . . . . . . . 13 (((𝐴 +P 𝐷) ∈ P𝐺P) → ((𝐴 +P 𝐷) ·P 𝐺) = (𝐺 ·P (𝐴 +P 𝐷)))
5048, 2, 49syl2anc 409 . . . . . . . . . . . 12 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐴 +P 𝐷) ·P 𝐺) = (𝐺 ·P (𝐴 +P 𝐷)))
51 mulcomprg 7542 . . . . . . . . . . . . . 14 ((𝐴P𝐺P) → (𝐴 ·P 𝐺) = (𝐺 ·P 𝐴))
5235, 2, 51syl2anc 409 . . . . . . . . . . . . 13 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐴 ·P 𝐺) = (𝐺 ·P 𝐴))
53 mulcomprg 7542 . . . . . . . . . . . . . 14 ((𝐷P𝐺P) → (𝐷 ·P 𝐺) = (𝐺 ·P 𝐷))
545, 2, 53syl2anc 409 . . . . . . . . . . . . 13 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐷 ·P 𝐺) = (𝐺 ·P 𝐷))
5552, 54oveq12d 5871 . . . . . . . . . . . 12 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝐺)) = ((𝐺 ·P 𝐴) +P (𝐺 ·P 𝐷)))
5646, 50, 553eqtr4d 2213 . . . . . . . . . . 11 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐴 +P 𝐷) ·P 𝐺) = ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝐺)))
5756adantr 274 . . . . . . . . . 10 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → ((𝐴 +P 𝐷) ·P 𝐺) = ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝐺)))
58 distrprg 7550 . . . . . . . . . . . . 13 ((𝐺P𝐵P𝐶P) → (𝐺 ·P (𝐵 +P 𝐶)) = ((𝐺 ·P 𝐵) +P (𝐺 ·P 𝐶)))
592, 1, 11, 58syl3anc 1233 . . . . . . . . . . . 12 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐺 ·P (𝐵 +P 𝐶)) = ((𝐺 ·P 𝐵) +P (𝐺 ·P 𝐶)))
60 addclpr 7499 . . . . . . . . . . . . . 14 ((𝐵P𝐶P) → (𝐵 +P 𝐶) ∈ P)
611, 11, 60syl2anc 409 . . . . . . . . . . . . 13 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐵 +P 𝐶) ∈ P)
62 mulcomprg 7542 . . . . . . . . . . . . 13 (((𝐵 +P 𝐶) ∈ P𝐺P) → ((𝐵 +P 𝐶) ·P 𝐺) = (𝐺 ·P (𝐵 +P 𝐶)))
6361, 2, 62syl2anc 409 . . . . . . . . . . . 12 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐵 +P 𝐶) ·P 𝐺) = (𝐺 ·P (𝐵 +P 𝐶)))
64 mulcomprg 7542 . . . . . . . . . . . . . 14 ((𝐵P𝐺P) → (𝐵 ·P 𝐺) = (𝐺 ·P 𝐵))
651, 2, 64syl2anc 409 . . . . . . . . . . . . 13 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐵 ·P 𝐺) = (𝐺 ·P 𝐵))
66 mulcomprg 7542 . . . . . . . . . . . . . 14 ((𝐶P𝐺P) → (𝐶 ·P 𝐺) = (𝐺 ·P 𝐶))
6711, 2, 66syl2anc 409 . . . . . . . . . . . . 13 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐶 ·P 𝐺) = (𝐺 ·P 𝐶))
6865, 67oveq12d 5871 . . . . . . . . . . . 12 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐵 ·P 𝐺) +P (𝐶 ·P 𝐺)) = ((𝐺 ·P 𝐵) +P (𝐺 ·P 𝐶)))
6959, 63, 683eqtr4d 2213 . . . . . . . . . . 11 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐵 +P 𝐶) ·P 𝐺) = ((𝐵 ·P 𝐺) +P (𝐶 ·P 𝐺)))
7069adantr 274 . . . . . . . . . 10 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → ((𝐵 +P 𝐶) ·P 𝐺) = ((𝐵 ·P 𝐺) +P (𝐶 ·P 𝐺)))
7144, 57, 703eqtr3d 2211 . . . . . . . . 9 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝐺)) = ((𝐵 ·P 𝐺) +P (𝐶 ·P 𝐺)))
7271oveq1d 5868 . . . . . . . 8 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → (((𝐴 ·P 𝐺) +P (𝐷 ·P 𝐺)) +P (𝐷 ·P 𝑅)) = (((𝐵 ·P 𝐺) +P (𝐶 ·P 𝐺)) +P (𝐷 ·P 𝑅)))
7334, 42, 723eqtr2d 2209 . . . . . . 7 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → ((𝐴 ·P 𝐺) +P ((𝐷 ·P 𝐹) +P (𝐷 ·P 𝑆))) = (((𝐵 ·P 𝐺) +P (𝐶 ·P 𝐺)) +P (𝐷 ·P 𝑅)))
74 mulclpr 7534 . . . . . . . . . 10 ((𝐷P𝐹P) → (𝐷 ·P 𝐹) ∈ P)
755, 14, 74syl2anc 409 . . . . . . . . 9 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐷 ·P 𝐹) ∈ P)
76 mulclpr 7534 . . . . . . . . . 10 ((𝐷P𝑆P) → (𝐷 ·P 𝑆) ∈ P)
775, 26, 76syl2anc 409 . . . . . . . . 9 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐷 ·P 𝑆) ∈ P)
78 addcomprg 7540 . . . . . . . . . 10 ((𝑥P𝑦P) → (𝑥 +P 𝑦) = (𝑦 +P 𝑥))
7978adantl 275 . . . . . . . . 9 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ (𝑥P𝑦P)) → (𝑥 +P 𝑦) = (𝑦 +P 𝑥))
80 addassprg 7541 . . . . . . . . . 10 ((𝑥P𝑦P𝑧P) → ((𝑥 +P 𝑦) +P 𝑧) = (𝑥 +P (𝑦 +P 𝑧)))
8180adantl 275 . . . . . . . . 9 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ (𝑥P𝑦P𝑧P)) → ((𝑥 +P 𝑦) +P 𝑧) = (𝑥 +P (𝑦 +P 𝑧)))
8237, 75, 77, 79, 81caov12d 6034 . . . . . . . 8 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐴 ·P 𝐺) +P ((𝐷 ·P 𝐹) +P (𝐷 ·P 𝑆))) = ((𝐷 ·P 𝐹) +P ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆))))
8382adantr 274 . . . . . . 7 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → ((𝐴 ·P 𝐺) +P ((𝐷 ·P 𝐹) +P (𝐷 ·P 𝑆))) = ((𝐷 ·P 𝐹) +P ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆))))
844, 13, 8, 79, 81caov32d 6033 . . . . . . . 8 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐵 ·P 𝐺) +P (𝐶 ·P 𝐺)) +P (𝐷 ·P 𝑅)) = (((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P (𝐶 ·P 𝐺)))
8584adantr 274 . . . . . . 7 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → (((𝐵 ·P 𝐺) +P (𝐶 ·P 𝐺)) +P (𝐷 ·P 𝑅)) = (((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P (𝐶 ·P 𝐺)))
8673, 83, 853eqtr3d 2211 . . . . . 6 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → ((𝐷 ·P 𝐹) +P ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆))) = (((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P (𝐶 ·P 𝐺)))
8786oveq1d 5868 . . . . 5 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → (((𝐷 ·P 𝐹) +P ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆))) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))) = ((((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P (𝐶 ·P 𝐺)) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))))
88 oveq1 5860 . . . . . . . . . . . 12 ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) → ((𝐴 +P 𝐷) ·P 𝐹) = ((𝐵 +P 𝐶) ·P 𝐹))
8988adantl 275 . . . . . . . . . . 11 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ (𝐴 +P 𝐷) = (𝐵 +P 𝐶)) → ((𝐴 +P 𝐷) ·P 𝐹) = ((𝐵 +P 𝐶) ·P 𝐹))
90 distrprg 7550 . . . . . . . . . . . . . 14 ((𝐹P𝐴P𝐷P) → (𝐹 ·P (𝐴 +P 𝐷)) = ((𝐹 ·P 𝐴) +P (𝐹 ·P 𝐷)))
9114, 35, 5, 90syl3anc 1233 . . . . . . . . . . . . 13 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐹 ·P (𝐴 +P 𝐷)) = ((𝐹 ·P 𝐴) +P (𝐹 ·P 𝐷)))
92 mulcomprg 7542 . . . . . . . . . . . . . 14 (((𝐴 +P 𝐷) ∈ P𝐹P) → ((𝐴 +P 𝐷) ·P 𝐹) = (𝐹 ·P (𝐴 +P 𝐷)))
9348, 14, 92syl2anc 409 . . . . . . . . . . . . 13 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐴 +P 𝐷) ·P 𝐹) = (𝐹 ·P (𝐴 +P 𝐷)))
94 mulcomprg 7542 . . . . . . . . . . . . . . 15 ((𝐴P𝐹P) → (𝐴 ·P 𝐹) = (𝐹 ·P 𝐴))
9535, 14, 94syl2anc 409 . . . . . . . . . . . . . 14 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐴 ·P 𝐹) = (𝐹 ·P 𝐴))
96 mulcomprg 7542 . . . . . . . . . . . . . . 15 ((𝐷P𝐹P) → (𝐷 ·P 𝐹) = (𝐹 ·P 𝐷))
975, 14, 96syl2anc 409 . . . . . . . . . . . . . 14 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐷 ·P 𝐹) = (𝐹 ·P 𝐷))
9895, 97oveq12d 5871 . . . . . . . . . . . . 13 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐴 ·P 𝐹) +P (𝐷 ·P 𝐹)) = ((𝐹 ·P 𝐴) +P (𝐹 ·P 𝐷)))
9991, 93, 983eqtr4d 2213 . . . . . . . . . . . 12 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐴 +P 𝐷) ·P 𝐹) = ((𝐴 ·P 𝐹) +P (𝐷 ·P 𝐹)))
10099adantr 274 . . . . . . . . . . 11 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ (𝐴 +P 𝐷) = (𝐵 +P 𝐶)) → ((𝐴 +P 𝐷) ·P 𝐹) = ((𝐴 ·P 𝐹) +P (𝐷 ·P 𝐹)))
101 distrprg 7550 . . . . . . . . . . . . . 14 ((𝐹P𝐵P𝐶P) → (𝐹 ·P (𝐵 +P 𝐶)) = ((𝐹 ·P 𝐵) +P (𝐹 ·P 𝐶)))
10214, 1, 11, 101syl3anc 1233 . . . . . . . . . . . . 13 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐹 ·P (𝐵 +P 𝐶)) = ((𝐹 ·P 𝐵) +P (𝐹 ·P 𝐶)))
103 mulcomprg 7542 . . . . . . . . . . . . . 14 (((𝐵 +P 𝐶) ∈ P𝐹P) → ((𝐵 +P 𝐶) ·P 𝐹) = (𝐹 ·P (𝐵 +P 𝐶)))
10461, 14, 103syl2anc 409 . . . . . . . . . . . . 13 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐵 +P 𝐶) ·P 𝐹) = (𝐹 ·P (𝐵 +P 𝐶)))
105 mulcomprg 7542 . . . . . . . . . . . . . . 15 ((𝐵P𝐹P) → (𝐵 ·P 𝐹) = (𝐹 ·P 𝐵))
1061, 14, 105syl2anc 409 . . . . . . . . . . . . . 14 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐵 ·P 𝐹) = (𝐹 ·P 𝐵))
107 mulcomprg 7542 . . . . . . . . . . . . . . 15 ((𝐶P𝐹P) → (𝐶 ·P 𝐹) = (𝐹 ·P 𝐶))
10811, 14, 107syl2anc 409 . . . . . . . . . . . . . 14 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐶 ·P 𝐹) = (𝐹 ·P 𝐶))
109106, 108oveq12d 5871 . . . . . . . . . . . . 13 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝐹)) = ((𝐹 ·P 𝐵) +P (𝐹 ·P 𝐶)))
110102, 104, 1093eqtr4d 2213 . . . . . . . . . . . 12 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐵 +P 𝐶) ·P 𝐹) = ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝐹)))
111110adantr 274 . . . . . . . . . . 11 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ (𝐴 +P 𝐷) = (𝐵 +P 𝐶)) → ((𝐵 +P 𝐶) ·P 𝐹) = ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝐹)))
11289, 100, 1113eqtr3d 2211 . . . . . . . . . 10 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ (𝐴 +P 𝐷) = (𝐵 +P 𝐶)) → ((𝐴 ·P 𝐹) +P (𝐷 ·P 𝐹)) = ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝐹)))
113112oveq1d 5868 . . . . . . . . 9 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ (𝐴 +P 𝐷) = (𝐵 +P 𝐶)) → (((𝐴 ·P 𝐹) +P (𝐷 ·P 𝐹)) +P (𝐶 ·P 𝑆)) = (((𝐵 ·P 𝐹) +P (𝐶 ·P 𝐹)) +P (𝐶 ·P 𝑆)))
114113adantrr 476 . . . . . . . 8 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → (((𝐴 ·P 𝐹) +P (𝐷 ·P 𝐹)) +P (𝐶 ·P 𝑆)) = (((𝐵 ·P 𝐹) +P (𝐶 ·P 𝐹)) +P (𝐶 ·P 𝑆)))
115 mulclpr 7534 . . . . . . . . . . . . 13 ((𝐶P𝐹P) → (𝐶 ·P 𝐹) ∈ P)
11611, 14, 115syl2anc 409 . . . . . . . . . . . 12 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐶 ·P 𝐹) ∈ P)
117 mulclpr 7534 . . . . . . . . . . . . 13 ((𝐶P𝑆P) → (𝐶 ·P 𝑆) ∈ P)
11811, 26, 117syl2anc 409 . . . . . . . . . . . 12 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐶 ·P 𝑆) ∈ P)
119 addassprg 7541 . . . . . . . . . . . 12 (((𝐵 ·P 𝐹) ∈ P ∧ (𝐶 ·P 𝐹) ∈ P ∧ (𝐶 ·P 𝑆) ∈ P) → (((𝐵 ·P 𝐹) +P (𝐶 ·P 𝐹)) +P (𝐶 ·P 𝑆)) = ((𝐵 ·P 𝐹) +P ((𝐶 ·P 𝐹) +P (𝐶 ·P 𝑆))))
12016, 116, 118, 119syl3anc 1233 . . . . . . . . . . 11 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐵 ·P 𝐹) +P (𝐶 ·P 𝐹)) +P (𝐶 ·P 𝑆)) = ((𝐵 ·P 𝐹) +P ((𝐶 ·P 𝐹) +P (𝐶 ·P 𝑆))))
121120adantr 274 . . . . . . . . . 10 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → (((𝐵 ·P 𝐹) +P (𝐶 ·P 𝐹)) +P (𝐶 ·P 𝑆)) = ((𝐵 ·P 𝐹) +P ((𝐶 ·P 𝐹) +P (𝐶 ·P 𝑆))))
122 oveq2 5861 . . . . . . . . . . . . 13 ((𝐹 +P 𝑆) = (𝐺 +P 𝑅) → (𝐶 ·P (𝐹 +P 𝑆)) = (𝐶 ·P (𝐺 +P 𝑅)))
123122adantl 275 . . . . . . . . . . . 12 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → (𝐶 ·P (𝐹 +P 𝑆)) = (𝐶 ·P (𝐺 +P 𝑅)))
124 distrprg 7550 . . . . . . . . . . . . . 14 ((𝐶P𝐹P𝑆P) → (𝐶 ·P (𝐹 +P 𝑆)) = ((𝐶 ·P 𝐹) +P (𝐶 ·P 𝑆)))
12511, 14, 26, 124syl3anc 1233 . . . . . . . . . . . . 13 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐶 ·P (𝐹 +P 𝑆)) = ((𝐶 ·P 𝐹) +P (𝐶 ·P 𝑆)))
126125adantr 274 . . . . . . . . . . . 12 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → (𝐶 ·P (𝐹 +P 𝑆)) = ((𝐶 ·P 𝐹) +P (𝐶 ·P 𝑆)))
127 distrprg 7550 . . . . . . . . . . . . . 14 ((𝐶P𝐺P𝑅P) → (𝐶 ·P (𝐺 +P 𝑅)) = ((𝐶 ·P 𝐺) +P (𝐶 ·P 𝑅)))
12811, 2, 6, 127syl3anc 1233 . . . . . . . . . . . . 13 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐶 ·P (𝐺 +P 𝑅)) = ((𝐶 ·P 𝐺) +P (𝐶 ·P 𝑅)))
129128adantr 274 . . . . . . . . . . . 12 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → (𝐶 ·P (𝐺 +P 𝑅)) = ((𝐶 ·P 𝐺) +P (𝐶 ·P 𝑅)))
130123, 126, 1293eqtr3d 2211 . . . . . . . . . . 11 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐶 ·P 𝐹) +P (𝐶 ·P 𝑆)) = ((𝐶 ·P 𝐺) +P (𝐶 ·P 𝑅)))
131130oveq2d 5869 . . . . . . . . . 10 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐵 ·P 𝐹) +P ((𝐶 ·P 𝐹) +P (𝐶 ·P 𝑆))) = ((𝐵 ·P 𝐹) +P ((𝐶 ·P 𝐺) +P (𝐶 ·P 𝑅))))
132121, 131eqtrd 2203 . . . . . . . . 9 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → (((𝐵 ·P 𝐹) +P (𝐶 ·P 𝐹)) +P (𝐶 ·P 𝑆)) = ((𝐵 ·P 𝐹) +P ((𝐶 ·P 𝐺) +P (𝐶 ·P 𝑅))))
133132adantrl 475 . . . . . . . 8 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → (((𝐵 ·P 𝐹) +P (𝐶 ·P 𝐹)) +P (𝐶 ·P 𝑆)) = ((𝐵 ·P 𝐹) +P ((𝐶 ·P 𝐺) +P (𝐶 ·P 𝑅))))
134114, 133eqtrd 2203 . . . . . . 7 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → (((𝐴 ·P 𝐹) +P (𝐷 ·P 𝐹)) +P (𝐶 ·P 𝑆)) = ((𝐵 ·P 𝐹) +P ((𝐶 ·P 𝐺) +P (𝐶 ·P 𝑅))))
135 mulclpr 7534 . . . . . . . . . 10 ((𝐴P𝐹P) → (𝐴 ·P 𝐹) ∈ P)
13635, 14, 135syl2anc 409 . . . . . . . . 9 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐴 ·P 𝐹) ∈ P)
137136, 75, 118, 79, 81caov32d 6033 . . . . . . . 8 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 ·P 𝐹) +P (𝐷 ·P 𝐹)) +P (𝐶 ·P 𝑆)) = (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P (𝐷 ·P 𝐹)))
138137adantr 274 . . . . . . 7 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → (((𝐴 ·P 𝐹) +P (𝐷 ·P 𝐹)) +P (𝐶 ·P 𝑆)) = (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P (𝐷 ·P 𝐹)))
13916, 13, 18, 79, 81caov12d 6034 . . . . . . . 8 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐵 ·P 𝐹) +P ((𝐶 ·P 𝐺) +P (𝐶 ·P 𝑅))) = ((𝐶 ·P 𝐺) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))))
140139adantr 274 . . . . . . 7 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → ((𝐵 ·P 𝐹) +P ((𝐶 ·P 𝐺) +P (𝐶 ·P 𝑅))) = ((𝐶 ·P 𝐺) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))))
141134, 138, 1403eqtr3d 2211 . . . . . 6 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P (𝐷 ·P 𝐹)) = ((𝐶 ·P 𝐺) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))))
142141oveq2d 5869 . . . . 5 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → (((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P (𝐷 ·P 𝐹))) = (((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P ((𝐶 ·P 𝐺) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅)))))
14323, 87, 1423eqtr4rd 2214 . . . 4 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → (((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P (𝐷 ·P 𝐹))) = (((𝐷 ·P 𝐹) +P ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆))) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))))
144 addclpr 7499 . . . . . . 7 (((𝐴 ·P 𝐹) ∈ P ∧ (𝐶 ·P 𝑆) ∈ P) → ((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) ∈ P)
145136, 118, 144syl2anc 409 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) ∈ P)
14610, 145, 75, 79, 81caov13d 6036 . . . . 5 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P (𝐷 ·P 𝐹))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P ((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)))))
147146adantr 274 . . . 4 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → (((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P (𝐷 ·P 𝐹))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P ((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)))))
148 addclpr 7499 . . . . . . 7 (((𝐴 ·P 𝐺) ∈ P ∧ (𝐷 ·P 𝑆) ∈ P) → ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆)) ∈ P)
14937, 77, 148syl2anc 409 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆)) ∈ P)
150 addassprg 7541 . . . . . 6 (((𝐷 ·P 𝐹) ∈ P ∧ ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆)) ∈ P ∧ ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅)) ∈ P) → (((𝐷 ·P 𝐹) +P ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆))) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆)) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅)))))
15175, 149, 20, 150syl3anc 1233 . . . . 5 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐷 ·P 𝐹) +P ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆))) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆)) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅)))))
152151adantr 274 . . . 4 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → (((𝐷 ·P 𝐹) +P ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆))) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆)) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅)))))
153143, 147, 1523eqtr3d 2211 . . 3 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P ((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆)) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅)))))
154 addclpr 7499 . . . . . . 7 ((𝑥P𝑦P) → (𝑥 +P 𝑦) ∈ P)
155154adantl 275 . . . . . 6 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ (𝑥P𝑦P)) → (𝑥 +P 𝑦) ∈ P)
156136, 118, 4, 79, 81, 8, 155caov4d 6037 . . . . 5 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P ((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅))) = (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))))
157156oveq2d 5869 . . . 4 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P ((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)))))
158157adantr 274 . . 3 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P ((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)))))
15937, 77, 16, 79, 81, 18, 155caov42d 6039 . . . . 5 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆)) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))) = (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆))))
160159oveq2d 5869 . . . 4 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆)) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))))
161160adantr 274 . . 3 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆)) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))))
162153, 158, 1613eqtr3d 2211 . 2 (((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) ∧ ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅))) → ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))))
163162ex 114 1 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆))))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973   = wceq 1348  wcel 2141  (class class class)co 5853  Pcnp 7253   +P cpp 7255   ·P cmp 7256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-iplp 7430  df-imp 7431
This theorem is referenced by:  mulcmpblnr  7703
  Copyright terms: Public domain W3C validator