ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caov4d GIF version

Theorem caov4d 6144
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovd.1 (𝜑𝐴𝑆)
caovd.2 (𝜑𝐵𝑆)
caovd.3 (𝜑𝐶𝑆)
caovd.com ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
caovd.ass ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))
caovd.4 (𝜑𝐷𝑆)
caovd.cl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
Assertion
Ref Expression
caov4d (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐴𝐹𝐶)𝐹(𝐵𝐹𝐷)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem caov4d
StepHypRef Expression
1 caovd.2 . . . 4 (𝜑𝐵𝑆)
2 caovd.3 . . . 4 (𝜑𝐶𝑆)
3 caovd.4 . . . 4 (𝜑𝐷𝑆)
4 caovd.com . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
5 caovd.ass . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))
61, 2, 3, 4, 5caov12d 6141 . . 3 (𝜑 → (𝐵𝐹(𝐶𝐹𝐷)) = (𝐶𝐹(𝐵𝐹𝐷)))
76oveq2d 5973 . 2 (𝜑 → (𝐴𝐹(𝐵𝐹(𝐶𝐹𝐷))) = (𝐴𝐹(𝐶𝐹(𝐵𝐹𝐷))))
8 caovd.1 . . 3 (𝜑𝐴𝑆)
9 caovd.cl . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
109, 2, 3caovcld 6113 . . 3 (𝜑 → (𝐶𝐹𝐷) ∈ 𝑆)
115, 8, 1, 10caovassd 6119 . 2 (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = (𝐴𝐹(𝐵𝐹(𝐶𝐹𝐷))))
129, 1, 3caovcld 6113 . . 3 (𝜑 → (𝐵𝐹𝐷) ∈ 𝑆)
135, 8, 2, 12caovassd 6119 . 2 (𝜑 → ((𝐴𝐹𝐶)𝐹(𝐵𝐹𝐷)) = (𝐴𝐹(𝐶𝐹(𝐵𝐹𝐷))))
147, 11, 133eqtr4d 2249 1 (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐴𝐹𝐶)𝐹(𝐵𝐹𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  (class class class)co 5957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-iota 5241  df-fv 5288  df-ov 5960
This theorem is referenced by:  caov411d  6145  caov42d  6146  ecopovtrn  6732  ecopovtrng  6735  addcmpblnq  7500  mulcmpblnq  7501  ordpipqqs  7507  distrnqg  7520  ltsonq  7531  ltanqg  7533  ltmnqg  7534  addcmpblnq0  7576  mulcmpblnq0  7577  distrnq0  7592  prarloclemlo  7627  addlocprlemeqgt  7665  addcanprleml  7747  recexprlem1ssl  7766  recexprlem1ssu  7767  mulcmpblnrlemg  7873  distrsrg  7892  ltasrg  7903  mulgt0sr  7911  prsradd  7919  axdistr  8007
  Copyright terms: Public domain W3C validator