ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caov4d GIF version

Theorem caov4d 6108
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovd.1 (𝜑𝐴𝑆)
caovd.2 (𝜑𝐵𝑆)
caovd.3 (𝜑𝐶𝑆)
caovd.com ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
caovd.ass ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))
caovd.4 (𝜑𝐷𝑆)
caovd.cl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
Assertion
Ref Expression
caov4d (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐴𝐹𝐶)𝐹(𝐵𝐹𝐷)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem caov4d
StepHypRef Expression
1 caovd.2 . . . 4 (𝜑𝐵𝑆)
2 caovd.3 . . . 4 (𝜑𝐶𝑆)
3 caovd.4 . . . 4 (𝜑𝐷𝑆)
4 caovd.com . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
5 caovd.ass . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))
61, 2, 3, 4, 5caov12d 6105 . . 3 (𝜑 → (𝐵𝐹(𝐶𝐹𝐷)) = (𝐶𝐹(𝐵𝐹𝐷)))
76oveq2d 5938 . 2 (𝜑 → (𝐴𝐹(𝐵𝐹(𝐶𝐹𝐷))) = (𝐴𝐹(𝐶𝐹(𝐵𝐹𝐷))))
8 caovd.1 . . 3 (𝜑𝐴𝑆)
9 caovd.cl . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
109, 2, 3caovcld 6077 . . 3 (𝜑 → (𝐶𝐹𝐷) ∈ 𝑆)
115, 8, 1, 10caovassd 6083 . 2 (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = (𝐴𝐹(𝐵𝐹(𝐶𝐹𝐷))))
129, 1, 3caovcld 6077 . . 3 (𝜑 → (𝐵𝐹𝐷) ∈ 𝑆)
135, 8, 2, 12caovassd 6083 . 2 (𝜑 → ((𝐴𝐹𝐶)𝐹(𝐵𝐹𝐷)) = (𝐴𝐹(𝐶𝐹(𝐵𝐹𝐷))))
147, 11, 133eqtr4d 2239 1 (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐴𝐹𝐶)𝐹(𝐵𝐹𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  (class class class)co 5922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-iota 5219  df-fv 5266  df-ov 5925
This theorem is referenced by:  caov411d  6109  caov42d  6110  ecopovtrn  6691  ecopovtrng  6694  addcmpblnq  7434  mulcmpblnq  7435  ordpipqqs  7441  distrnqg  7454  ltsonq  7465  ltanqg  7467  ltmnqg  7468  addcmpblnq0  7510  mulcmpblnq0  7511  distrnq0  7526  prarloclemlo  7561  addlocprlemeqgt  7599  addcanprleml  7681  recexprlem1ssl  7700  recexprlem1ssu  7701  mulcmpblnrlemg  7807  distrsrg  7826  ltasrg  7837  mulgt0sr  7845  prsradd  7853  axdistr  7941
  Copyright terms: Public domain W3C validator