| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caov4d | GIF version | ||
| Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.) |
| Ref | Expression |
|---|---|
| caovd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| caovd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
| caovd.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
| caovd.com | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) |
| caovd.ass | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) |
| caovd.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑆) |
| caovd.cl | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
| Ref | Expression |
|---|---|
| caov4d | ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐴𝐹𝐶)𝐹(𝐵𝐹𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovd.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
| 2 | caovd.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
| 3 | caovd.4 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑆) | |
| 4 | caovd.com | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) | |
| 5 | caovd.ass | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) | |
| 6 | 1, 2, 3, 4, 5 | caov12d 6127 | . . 3 ⊢ (𝜑 → (𝐵𝐹(𝐶𝐹𝐷)) = (𝐶𝐹(𝐵𝐹𝐷))) |
| 7 | 6 | oveq2d 5959 | . 2 ⊢ (𝜑 → (𝐴𝐹(𝐵𝐹(𝐶𝐹𝐷))) = (𝐴𝐹(𝐶𝐹(𝐵𝐹𝐷)))) |
| 8 | caovd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 9 | caovd.cl | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) | |
| 10 | 9, 2, 3 | caovcld 6099 | . . 3 ⊢ (𝜑 → (𝐶𝐹𝐷) ∈ 𝑆) |
| 11 | 5, 8, 1, 10 | caovassd 6105 | . 2 ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = (𝐴𝐹(𝐵𝐹(𝐶𝐹𝐷)))) |
| 12 | 9, 1, 3 | caovcld 6099 | . . 3 ⊢ (𝜑 → (𝐵𝐹𝐷) ∈ 𝑆) |
| 13 | 5, 8, 2, 12 | caovassd 6105 | . 2 ⊢ (𝜑 → ((𝐴𝐹𝐶)𝐹(𝐵𝐹𝐷)) = (𝐴𝐹(𝐶𝐹(𝐵𝐹𝐷)))) |
| 14 | 7, 11, 13 | 3eqtr4d 2247 | 1 ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐴𝐹𝐶)𝐹(𝐵𝐹𝐷))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 (class class class)co 5943 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-iota 5231 df-fv 5278 df-ov 5946 |
| This theorem is referenced by: caov411d 6131 caov42d 6132 ecopovtrn 6718 ecopovtrng 6721 addcmpblnq 7479 mulcmpblnq 7480 ordpipqqs 7486 distrnqg 7499 ltsonq 7510 ltanqg 7512 ltmnqg 7513 addcmpblnq0 7555 mulcmpblnq0 7556 distrnq0 7571 prarloclemlo 7606 addlocprlemeqgt 7644 addcanprleml 7726 recexprlem1ssl 7745 recexprlem1ssu 7746 mulcmpblnrlemg 7852 distrsrg 7871 ltasrg 7882 mulgt0sr 7890 prsradd 7898 axdistr 7986 |
| Copyright terms: Public domain | W3C validator |