ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caov4d GIF version

Theorem caov4d 6189
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovd.1 (𝜑𝐴𝑆)
caovd.2 (𝜑𝐵𝑆)
caovd.3 (𝜑𝐶𝑆)
caovd.com ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
caovd.ass ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))
caovd.4 (𝜑𝐷𝑆)
caovd.cl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
Assertion
Ref Expression
caov4d (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐴𝐹𝐶)𝐹(𝐵𝐹𝐷)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem caov4d
StepHypRef Expression
1 caovd.2 . . . 4 (𝜑𝐵𝑆)
2 caovd.3 . . . 4 (𝜑𝐶𝑆)
3 caovd.4 . . . 4 (𝜑𝐷𝑆)
4 caovd.com . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
5 caovd.ass . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))
61, 2, 3, 4, 5caov12d 6186 . . 3 (𝜑 → (𝐵𝐹(𝐶𝐹𝐷)) = (𝐶𝐹(𝐵𝐹𝐷)))
76oveq2d 6016 . 2 (𝜑 → (𝐴𝐹(𝐵𝐹(𝐶𝐹𝐷))) = (𝐴𝐹(𝐶𝐹(𝐵𝐹𝐷))))
8 caovd.1 . . 3 (𝜑𝐴𝑆)
9 caovd.cl . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
109, 2, 3caovcld 6158 . . 3 (𝜑 → (𝐶𝐹𝐷) ∈ 𝑆)
115, 8, 1, 10caovassd 6164 . 2 (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = (𝐴𝐹(𝐵𝐹(𝐶𝐹𝐷))))
129, 1, 3caovcld 6158 . . 3 (𝜑 → (𝐵𝐹𝐷) ∈ 𝑆)
135, 8, 2, 12caovassd 6164 . 2 (𝜑 → ((𝐴𝐹𝐶)𝐹(𝐵𝐹𝐷)) = (𝐴𝐹(𝐶𝐹(𝐵𝐹𝐷))))
147, 11, 133eqtr4d 2272 1 (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐴𝐹𝐶)𝐹(𝐵𝐹𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  (class class class)co 6000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-iota 5277  df-fv 5325  df-ov 6003
This theorem is referenced by:  caov411d  6190  caov42d  6191  ecopovtrn  6777  ecopovtrng  6780  addcmpblnq  7550  mulcmpblnq  7551  ordpipqqs  7557  distrnqg  7570  ltsonq  7581  ltanqg  7583  ltmnqg  7584  addcmpblnq0  7626  mulcmpblnq0  7627  distrnq0  7642  prarloclemlo  7677  addlocprlemeqgt  7715  addcanprleml  7797  recexprlem1ssl  7816  recexprlem1ssu  7817  mulcmpblnrlemg  7923  distrsrg  7942  ltasrg  7953  mulgt0sr  7961  prsradd  7969  axdistr  8057
  Copyright terms: Public domain W3C validator