| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > caov4d | GIF version | ||
| Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.) | 
| Ref | Expression | 
|---|---|
| caovd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) | 
| caovd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) | 
| caovd.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑆) | 
| caovd.com | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) | 
| caovd.ass | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) | 
| caovd.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑆) | 
| caovd.cl | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) | 
| Ref | Expression | 
|---|---|
| caov4d | ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐴𝐹𝐶)𝐹(𝐵𝐹𝐷))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | caovd.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
| 2 | caovd.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
| 3 | caovd.4 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑆) | |
| 4 | caovd.com | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) | |
| 5 | caovd.ass | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) | |
| 6 | 1, 2, 3, 4, 5 | caov12d 6105 | . . 3 ⊢ (𝜑 → (𝐵𝐹(𝐶𝐹𝐷)) = (𝐶𝐹(𝐵𝐹𝐷))) | 
| 7 | 6 | oveq2d 5938 | . 2 ⊢ (𝜑 → (𝐴𝐹(𝐵𝐹(𝐶𝐹𝐷))) = (𝐴𝐹(𝐶𝐹(𝐵𝐹𝐷)))) | 
| 8 | caovd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 9 | caovd.cl | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) | |
| 10 | 9, 2, 3 | caovcld 6077 | . . 3 ⊢ (𝜑 → (𝐶𝐹𝐷) ∈ 𝑆) | 
| 11 | 5, 8, 1, 10 | caovassd 6083 | . 2 ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = (𝐴𝐹(𝐵𝐹(𝐶𝐹𝐷)))) | 
| 12 | 9, 1, 3 | caovcld 6077 | . . 3 ⊢ (𝜑 → (𝐵𝐹𝐷) ∈ 𝑆) | 
| 13 | 5, 8, 2, 12 | caovassd 6083 | . 2 ⊢ (𝜑 → ((𝐴𝐹𝐶)𝐹(𝐵𝐹𝐷)) = (𝐴𝐹(𝐶𝐹(𝐵𝐹𝐷)))) | 
| 14 | 7, 11, 13 | 3eqtr4d 2239 | 1 ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐴𝐹𝐶)𝐹(𝐵𝐹𝐷))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 (class class class)co 5922 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 | 
| This theorem is referenced by: caov411d 6109 caov42d 6110 ecopovtrn 6691 ecopovtrng 6694 addcmpblnq 7434 mulcmpblnq 7435 ordpipqqs 7441 distrnqg 7454 ltsonq 7465 ltanqg 7467 ltmnqg 7468 addcmpblnq0 7510 mulcmpblnq0 7511 distrnq0 7526 prarloclemlo 7561 addlocprlemeqgt 7599 addcanprleml 7681 recexprlem1ssl 7700 recexprlem1ssu 7701 mulcmpblnrlemg 7807 distrsrg 7826 ltasrg 7837 mulgt0sr 7845 prsradd 7853 axdistr 7941 | 
| Copyright terms: Public domain | W3C validator |