| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caov4d | GIF version | ||
| Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.) |
| Ref | Expression |
|---|---|
| caovd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| caovd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
| caovd.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
| caovd.com | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) |
| caovd.ass | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) |
| caovd.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑆) |
| caovd.cl | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
| Ref | Expression |
|---|---|
| caov4d | ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐴𝐹𝐶)𝐹(𝐵𝐹𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovd.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
| 2 | caovd.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
| 3 | caovd.4 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑆) | |
| 4 | caovd.com | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) | |
| 5 | caovd.ass | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) | |
| 6 | 1, 2, 3, 4, 5 | caov12d 6141 | . . 3 ⊢ (𝜑 → (𝐵𝐹(𝐶𝐹𝐷)) = (𝐶𝐹(𝐵𝐹𝐷))) |
| 7 | 6 | oveq2d 5973 | . 2 ⊢ (𝜑 → (𝐴𝐹(𝐵𝐹(𝐶𝐹𝐷))) = (𝐴𝐹(𝐶𝐹(𝐵𝐹𝐷)))) |
| 8 | caovd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 9 | caovd.cl | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) | |
| 10 | 9, 2, 3 | caovcld 6113 | . . 3 ⊢ (𝜑 → (𝐶𝐹𝐷) ∈ 𝑆) |
| 11 | 5, 8, 1, 10 | caovassd 6119 | . 2 ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = (𝐴𝐹(𝐵𝐹(𝐶𝐹𝐷)))) |
| 12 | 9, 1, 3 | caovcld 6113 | . . 3 ⊢ (𝜑 → (𝐵𝐹𝐷) ∈ 𝑆) |
| 13 | 5, 8, 2, 12 | caovassd 6119 | . 2 ⊢ (𝜑 → ((𝐴𝐹𝐶)𝐹(𝐵𝐹𝐷)) = (𝐴𝐹(𝐶𝐹(𝐵𝐹𝐷)))) |
| 14 | 7, 11, 13 | 3eqtr4d 2249 | 1 ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐴𝐹𝐶)𝐹(𝐵𝐹𝐷))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 (class class class)co 5957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-iota 5241 df-fv 5288 df-ov 5960 |
| This theorem is referenced by: caov411d 6145 caov42d 6146 ecopovtrn 6732 ecopovtrng 6735 addcmpblnq 7500 mulcmpblnq 7501 ordpipqqs 7507 distrnqg 7520 ltsonq 7531 ltanqg 7533 ltmnqg 7534 addcmpblnq0 7576 mulcmpblnq0 7577 distrnq0 7592 prarloclemlo 7627 addlocprlemeqgt 7665 addcanprleml 7747 recexprlem1ssl 7766 recexprlem1ssu 7767 mulcmpblnrlemg 7873 distrsrg 7892 ltasrg 7903 mulgt0sr 7911 prsradd 7919 axdistr 8007 |
| Copyright terms: Public domain | W3C validator |