| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caov4d | GIF version | ||
| Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.) |
| Ref | Expression |
|---|---|
| caovd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| caovd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
| caovd.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
| caovd.com | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) |
| caovd.ass | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) |
| caovd.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑆) |
| caovd.cl | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
| Ref | Expression |
|---|---|
| caov4d | ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐴𝐹𝐶)𝐹(𝐵𝐹𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovd.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
| 2 | caovd.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
| 3 | caovd.4 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑆) | |
| 4 | caovd.com | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) | |
| 5 | caovd.ass | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) | |
| 6 | 1, 2, 3, 4, 5 | caov12d 6186 | . . 3 ⊢ (𝜑 → (𝐵𝐹(𝐶𝐹𝐷)) = (𝐶𝐹(𝐵𝐹𝐷))) |
| 7 | 6 | oveq2d 6016 | . 2 ⊢ (𝜑 → (𝐴𝐹(𝐵𝐹(𝐶𝐹𝐷))) = (𝐴𝐹(𝐶𝐹(𝐵𝐹𝐷)))) |
| 8 | caovd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 9 | caovd.cl | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) | |
| 10 | 9, 2, 3 | caovcld 6158 | . . 3 ⊢ (𝜑 → (𝐶𝐹𝐷) ∈ 𝑆) |
| 11 | 5, 8, 1, 10 | caovassd 6164 | . 2 ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = (𝐴𝐹(𝐵𝐹(𝐶𝐹𝐷)))) |
| 12 | 9, 1, 3 | caovcld 6158 | . . 3 ⊢ (𝜑 → (𝐵𝐹𝐷) ∈ 𝑆) |
| 13 | 5, 8, 2, 12 | caovassd 6164 | . 2 ⊢ (𝜑 → ((𝐴𝐹𝐶)𝐹(𝐵𝐹𝐷)) = (𝐴𝐹(𝐶𝐹(𝐵𝐹𝐷)))) |
| 14 | 7, 11, 13 | 3eqtr4d 2272 | 1 ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐴𝐹𝐶)𝐹(𝐵𝐹𝐷))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 (class class class)co 6000 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 |
| This theorem is referenced by: caov411d 6190 caov42d 6191 ecopovtrn 6777 ecopovtrng 6780 addcmpblnq 7550 mulcmpblnq 7551 ordpipqqs 7557 distrnqg 7570 ltsonq 7581 ltanqg 7583 ltmnqg 7584 addcmpblnq0 7626 mulcmpblnq0 7627 distrnq0 7642 prarloclemlo 7677 addlocprlemeqgt 7715 addcanprleml 7797 recexprlem1ssl 7816 recexprlem1ssu 7817 mulcmpblnrlemg 7923 distrsrg 7942 ltasrg 7953 mulgt0sr 7961 prsradd 7969 axdistr 8057 |
| Copyright terms: Public domain | W3C validator |