Step | Hyp | Ref
| Expression |
1 | | df-nr 7689 |
. . 3
⊢
R = ((P × P) /
~R ) |
2 | | oveq1 5860 |
. . . . 5
⊢
([〈𝑣, 𝑢〉]
~R = 𝐶 → ([〈𝑣, 𝑢〉] ~R
+R [〈𝑥, 𝑦〉] ~R ) =
(𝐶
+R [〈𝑥, 𝑦〉] ~R
)) |
3 | | oveq1 5860 |
. . . . 5
⊢
([〈𝑣, 𝑢〉]
~R = 𝐶 → ([〈𝑣, 𝑢〉] ~R
+R [〈𝑧, 𝑤〉] ~R ) =
(𝐶
+R [〈𝑧, 𝑤〉] ~R
)) |
4 | 2, 3 | breq12d 4002 |
. . . 4
⊢
([〈𝑣, 𝑢〉]
~R = 𝐶 → (([〈𝑣, 𝑢〉] ~R
+R [〈𝑥, 𝑦〉] ~R )
<R ([〈𝑣, 𝑢〉] ~R
+R [〈𝑧, 𝑤〉] ~R ) ↔
(𝐶
+R [〈𝑥, 𝑦〉] ~R )
<R (𝐶 +R [〈𝑧, 𝑤〉] ~R
))) |
5 | 4 | bibi2d 231 |
. . 3
⊢
([〈𝑣, 𝑢〉]
~R = 𝐶 → (([〈𝑥, 𝑦〉] ~R
<R [〈𝑧, 𝑤〉] ~R ↔
([〈𝑣, 𝑢〉]
~R +R [〈𝑥, 𝑦〉] ~R )
<R ([〈𝑣, 𝑢〉] ~R
+R [〈𝑧, 𝑤〉] ~R )) ↔
([〈𝑥, 𝑦〉]
~R <R [〈𝑧, 𝑤〉] ~R ↔
(𝐶
+R [〈𝑥, 𝑦〉] ~R )
<R (𝐶 +R [〈𝑧, 𝑤〉] ~R
)))) |
6 | | breq1 3992 |
. . . 4
⊢
([〈𝑥, 𝑦〉]
~R = 𝐴 → ([〈𝑥, 𝑦〉] ~R
<R [〈𝑧, 𝑤〉] ~R ↔
𝐴
<R [〈𝑧, 𝑤〉] ~R
)) |
7 | | oveq2 5861 |
. . . . 5
⊢
([〈𝑥, 𝑦〉]
~R = 𝐴 → (𝐶 +R [〈𝑥, 𝑦〉] ~R ) =
(𝐶
+R 𝐴)) |
8 | 7 | breq1d 3999 |
. . . 4
⊢
([〈𝑥, 𝑦〉]
~R = 𝐴 → ((𝐶 +R [〈𝑥, 𝑦〉] ~R )
<R (𝐶 +R [〈𝑧, 𝑤〉] ~R ) ↔
(𝐶
+R 𝐴) <R (𝐶 +R
[〈𝑧, 𝑤〉]
~R ))) |
9 | 6, 8 | bibi12d 234 |
. . 3
⊢
([〈𝑥, 𝑦〉]
~R = 𝐴 → (([〈𝑥, 𝑦〉] ~R
<R [〈𝑧, 𝑤〉] ~R ↔
(𝐶
+R [〈𝑥, 𝑦〉] ~R )
<R (𝐶 +R [〈𝑧, 𝑤〉] ~R )) ↔
(𝐴
<R [〈𝑧, 𝑤〉] ~R ↔
(𝐶
+R 𝐴) <R (𝐶 +R
[〈𝑧, 𝑤〉]
~R )))) |
10 | | breq2 3993 |
. . . 4
⊢
([〈𝑧, 𝑤〉]
~R = 𝐵 → (𝐴 <R [〈𝑧, 𝑤〉] ~R ↔
𝐴
<R 𝐵)) |
11 | | oveq2 5861 |
. . . . 5
⊢
([〈𝑧, 𝑤〉]
~R = 𝐵 → (𝐶 +R [〈𝑧, 𝑤〉] ~R ) =
(𝐶
+R 𝐵)) |
12 | 11 | breq2d 4001 |
. . . 4
⊢
([〈𝑧, 𝑤〉]
~R = 𝐵 → ((𝐶 +R 𝐴) <R
(𝐶
+R [〈𝑧, 𝑤〉] ~R ) ↔
(𝐶
+R 𝐴) <R (𝐶 +R
𝐵))) |
13 | 10, 12 | bibi12d 234 |
. . 3
⊢
([〈𝑧, 𝑤〉]
~R = 𝐵 → ((𝐴 <R [〈𝑧, 𝑤〉] ~R ↔
(𝐶
+R 𝐴) <R (𝐶 +R
[〈𝑧, 𝑤〉]
~R )) ↔ (𝐴 <R 𝐵 ↔ (𝐶 +R 𝐴) <R
(𝐶
+R 𝐵)))) |
14 | | simp2l 1018 |
. . . . . . 7
⊢ (((𝑣 ∈ P ∧
𝑢 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) →
𝑥 ∈
P) |
15 | | simp3r 1021 |
. . . . . . 7
⊢ (((𝑣 ∈ P ∧
𝑢 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) →
𝑤 ∈
P) |
16 | | addclpr 7499 |
. . . . . . 7
⊢ ((𝑥 ∈ P ∧
𝑤 ∈ P)
→ (𝑥
+P 𝑤) ∈ P) |
17 | 14, 15, 16 | syl2anc 409 |
. . . . . 6
⊢ (((𝑣 ∈ P ∧
𝑢 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) →
(𝑥
+P 𝑤) ∈ P) |
18 | | simp2r 1019 |
. . . . . . 7
⊢ (((𝑣 ∈ P ∧
𝑢 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) →
𝑦 ∈
P) |
19 | | simp3l 1020 |
. . . . . . 7
⊢ (((𝑣 ∈ P ∧
𝑢 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) →
𝑧 ∈
P) |
20 | | addclpr 7499 |
. . . . . . 7
⊢ ((𝑦 ∈ P ∧
𝑧 ∈ P)
→ (𝑦
+P 𝑧) ∈ P) |
21 | 18, 19, 20 | syl2anc 409 |
. . . . . 6
⊢ (((𝑣 ∈ P ∧
𝑢 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) →
(𝑦
+P 𝑧) ∈ P) |
22 | | addclpr 7499 |
. . . . . . 7
⊢ ((𝑣 ∈ P ∧
𝑢 ∈ P)
→ (𝑣
+P 𝑢) ∈ P) |
23 | 22 | 3ad2ant1 1013 |
. . . . . 6
⊢ (((𝑣 ∈ P ∧
𝑢 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) →
(𝑣
+P 𝑢) ∈ P) |
24 | | ltaprg 7581 |
. . . . . 6
⊢ (((𝑥 +P
𝑤) ∈ P
∧ (𝑦
+P 𝑧) ∈ P ∧ (𝑣 +P
𝑢) ∈ P)
→ ((𝑥
+P 𝑤)<P (𝑦 +P
𝑧) ↔ ((𝑣 +P
𝑢)
+P (𝑥 +P 𝑤))<P
((𝑣
+P 𝑢) +P (𝑦 +P
𝑧)))) |
25 | 17, 21, 23, 24 | syl3anc 1233 |
. . . . 5
⊢ (((𝑣 ∈ P ∧
𝑢 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) →
((𝑥
+P 𝑤)<P (𝑦 +P
𝑧) ↔ ((𝑣 +P
𝑢)
+P (𝑥 +P 𝑤))<P
((𝑣
+P 𝑢) +P (𝑦 +P
𝑧)))) |
26 | | ltsrprg 7709 |
. . . . . 6
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → ([〈𝑥, 𝑦〉] ~R
<R [〈𝑧, 𝑤〉] ~R ↔
(𝑥
+P 𝑤)<P (𝑦 +P
𝑧))) |
27 | 26 | 3adant1 1010 |
. . . . 5
⊢ (((𝑣 ∈ P ∧
𝑢 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) →
([〈𝑥, 𝑦〉]
~R <R [〈𝑧, 𝑤〉] ~R ↔
(𝑥
+P 𝑤)<P (𝑦 +P
𝑧))) |
28 | | simp1l 1016 |
. . . . . . . 8
⊢ (((𝑣 ∈ P ∧
𝑢 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) →
𝑣 ∈
P) |
29 | | addclpr 7499 |
. . . . . . . 8
⊢ ((𝑣 ∈ P ∧
𝑥 ∈ P)
→ (𝑣
+P 𝑥) ∈ P) |
30 | 28, 14, 29 | syl2anc 409 |
. . . . . . 7
⊢ (((𝑣 ∈ P ∧
𝑢 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) →
(𝑣
+P 𝑥) ∈ P) |
31 | | simp1r 1017 |
. . . . . . . 8
⊢ (((𝑣 ∈ P ∧
𝑢 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) →
𝑢 ∈
P) |
32 | | addclpr 7499 |
. . . . . . . 8
⊢ ((𝑢 ∈ P ∧
𝑦 ∈ P)
→ (𝑢
+P 𝑦) ∈ P) |
33 | 31, 18, 32 | syl2anc 409 |
. . . . . . 7
⊢ (((𝑣 ∈ P ∧
𝑢 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) →
(𝑢
+P 𝑦) ∈ P) |
34 | | addclpr 7499 |
. . . . . . . 8
⊢ ((𝑣 ∈ P ∧
𝑧 ∈ P)
→ (𝑣
+P 𝑧) ∈ P) |
35 | 28, 19, 34 | syl2anc 409 |
. . . . . . 7
⊢ (((𝑣 ∈ P ∧
𝑢 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) →
(𝑣
+P 𝑧) ∈ P) |
36 | | addclpr 7499 |
. . . . . . . 8
⊢ ((𝑢 ∈ P ∧
𝑤 ∈ P)
→ (𝑢
+P 𝑤) ∈ P) |
37 | 31, 15, 36 | syl2anc 409 |
. . . . . . 7
⊢ (((𝑣 ∈ P ∧
𝑢 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) →
(𝑢
+P 𝑤) ∈ P) |
38 | | ltsrprg 7709 |
. . . . . . 7
⊢ ((((𝑣 +P
𝑥) ∈ P
∧ (𝑢
+P 𝑦) ∈ P) ∧ ((𝑣 +P
𝑧) ∈ P
∧ (𝑢
+P 𝑤) ∈ P)) →
([〈(𝑣
+P 𝑥), (𝑢 +P 𝑦)〉]
~R <R [〈(𝑣 +P
𝑧), (𝑢 +P 𝑤)〉]
~R ↔ ((𝑣 +P 𝑥) +P
(𝑢
+P 𝑤))<P ((𝑢 +P
𝑦)
+P (𝑣 +P 𝑧)))) |
39 | 30, 33, 35, 37, 38 | syl22anc 1234 |
. . . . . 6
⊢ (((𝑣 ∈ P ∧
𝑢 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) →
([〈(𝑣
+P 𝑥), (𝑢 +P 𝑦)〉]
~R <R [〈(𝑣 +P
𝑧), (𝑢 +P 𝑤)〉]
~R ↔ ((𝑣 +P 𝑥) +P
(𝑢
+P 𝑤))<P ((𝑢 +P
𝑦)
+P (𝑣 +P 𝑧)))) |
40 | | addcomprg 7540 |
. . . . . . . . 9
⊢ ((𝑟 ∈ P ∧
𝑠 ∈ P)
→ (𝑟
+P 𝑠) = (𝑠 +P 𝑟)) |
41 | 40 | adantl 275 |
. . . . . . . 8
⊢ ((((𝑣 ∈ P ∧
𝑢 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑟 ∈ P
∧ 𝑠 ∈
P)) → (𝑟
+P 𝑠) = (𝑠 +P 𝑟)) |
42 | | addassprg 7541 |
. . . . . . . . 9
⊢ ((𝑟 ∈ P ∧
𝑠 ∈ P
∧ 𝑡 ∈
P) → ((𝑟
+P 𝑠) +P 𝑡) = (𝑟 +P (𝑠 +P
𝑡))) |
43 | 42 | adantl 275 |
. . . . . . . 8
⊢ ((((𝑣 ∈ P ∧
𝑢 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑟 ∈ P
∧ 𝑠 ∈
P ∧ 𝑡
∈ P)) → ((𝑟 +P 𝑠) +P
𝑡) = (𝑟 +P (𝑠 +P
𝑡))) |
44 | | addclpr 7499 |
. . . . . . . . 9
⊢ ((𝑟 ∈ P ∧
𝑠 ∈ P)
→ (𝑟
+P 𝑠) ∈ P) |
45 | 44 | adantl 275 |
. . . . . . . 8
⊢ ((((𝑣 ∈ P ∧
𝑢 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) ∧
(𝑟 ∈ P
∧ 𝑠 ∈
P)) → (𝑟
+P 𝑠) ∈ P) |
46 | 28, 14, 31, 41, 43, 15, 45 | caov4d 6037 |
. . . . . . 7
⊢ (((𝑣 ∈ P ∧
𝑢 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) →
((𝑣
+P 𝑥) +P (𝑢 +P
𝑤)) = ((𝑣 +P 𝑢) +P
(𝑥
+P 𝑤))) |
47 | 41, 33, 35 | caovcomd 6009 |
. . . . . . . 8
⊢ (((𝑣 ∈ P ∧
𝑢 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) →
((𝑢
+P 𝑦) +P (𝑣 +P
𝑧)) = ((𝑣 +P 𝑧) +P
(𝑢
+P 𝑦))) |
48 | 28, 19, 31, 41, 43, 18, 45 | caov42d 6039 |
. . . . . . . 8
⊢ (((𝑣 ∈ P ∧
𝑢 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) →
((𝑣
+P 𝑧) +P (𝑢 +P
𝑦)) = ((𝑣 +P 𝑢) +P
(𝑦
+P 𝑧))) |
49 | 47, 48 | eqtrd 2203 |
. . . . . . 7
⊢ (((𝑣 ∈ P ∧
𝑢 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) →
((𝑢
+P 𝑦) +P (𝑣 +P
𝑧)) = ((𝑣 +P 𝑢) +P
(𝑦
+P 𝑧))) |
50 | 46, 49 | breq12d 4002 |
. . . . . 6
⊢ (((𝑣 ∈ P ∧
𝑢 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) →
(((𝑣
+P 𝑥) +P (𝑢 +P
𝑤))<P ((𝑢 +P
𝑦)
+P (𝑣 +P 𝑧)) ↔ ((𝑣 +P 𝑢) +P
(𝑥
+P 𝑤))<P ((𝑣 +P
𝑢)
+P (𝑦 +P 𝑧)))) |
51 | 39, 50 | bitrd 187 |
. . . . 5
⊢ (((𝑣 ∈ P ∧
𝑢 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) →
([〈(𝑣
+P 𝑥), (𝑢 +P 𝑦)〉]
~R <R [〈(𝑣 +P
𝑧), (𝑢 +P 𝑤)〉]
~R ↔ ((𝑣 +P 𝑢) +P
(𝑥
+P 𝑤))<P ((𝑣 +P
𝑢)
+P (𝑦 +P 𝑧)))) |
52 | 25, 27, 51 | 3bitr4d 219 |
. . . 4
⊢ (((𝑣 ∈ P ∧
𝑢 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) →
([〈𝑥, 𝑦〉]
~R <R [〈𝑧, 𝑤〉] ~R ↔
[〈(𝑣
+P 𝑥), (𝑢 +P 𝑦)〉]
~R <R [〈(𝑣 +P
𝑧), (𝑢 +P 𝑤)〉]
~R )) |
53 | | addsrpr 7707 |
. . . . . 6
⊢ (((𝑣 ∈ P ∧
𝑢 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P)) → ([〈𝑣, 𝑢〉] ~R
+R [〈𝑥, 𝑦〉] ~R ) =
[〈(𝑣
+P 𝑥), (𝑢 +P 𝑦)〉]
~R ) |
54 | 53 | 3adant3 1012 |
. . . . 5
⊢ (((𝑣 ∈ P ∧
𝑢 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) →
([〈𝑣, 𝑢〉]
~R +R [〈𝑥, 𝑦〉] ~R ) =
[〈(𝑣
+P 𝑥), (𝑢 +P 𝑦)〉]
~R ) |
55 | | addsrpr 7707 |
. . . . . 6
⊢ (((𝑣 ∈ P ∧
𝑢 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → ([〈𝑣, 𝑢〉] ~R
+R [〈𝑧, 𝑤〉] ~R ) =
[〈(𝑣
+P 𝑧), (𝑢 +P 𝑤)〉]
~R ) |
56 | 55 | 3adant2 1011 |
. . . . 5
⊢ (((𝑣 ∈ P ∧
𝑢 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) →
([〈𝑣, 𝑢〉]
~R +R [〈𝑧, 𝑤〉] ~R ) =
[〈(𝑣
+P 𝑧), (𝑢 +P 𝑤)〉]
~R ) |
57 | 54, 56 | breq12d 4002 |
. . . 4
⊢ (((𝑣 ∈ P ∧
𝑢 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) →
(([〈𝑣, 𝑢〉]
~R +R [〈𝑥, 𝑦〉] ~R )
<R ([〈𝑣, 𝑢〉] ~R
+R [〈𝑧, 𝑤〉] ~R ) ↔
[〈(𝑣
+P 𝑥), (𝑢 +P 𝑦)〉]
~R <R [〈(𝑣 +P
𝑧), (𝑢 +P 𝑤)〉]
~R )) |
58 | 52, 57 | bitr4d 190 |
. . 3
⊢ (((𝑣 ∈ P ∧
𝑢 ∈ P)
∧ (𝑥 ∈
P ∧ 𝑦
∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) →
([〈𝑥, 𝑦〉]
~R <R [〈𝑧, 𝑤〉] ~R ↔
([〈𝑣, 𝑢〉]
~R +R [〈𝑥, 𝑦〉] ~R )
<R ([〈𝑣, 𝑢〉] ~R
+R [〈𝑧, 𝑤〉] ~R
))) |
59 | 1, 5, 9, 13, 58 | 3ecoptocl 6602 |
. 2
⊢ ((𝐶 ∈ R ∧
𝐴 ∈ R
∧ 𝐵 ∈
R) → (𝐴
<R 𝐵 ↔ (𝐶 +R 𝐴) <R
(𝐶
+R 𝐵))) |
60 | 59 | 3coml 1205 |
1
⊢ ((𝐴 ∈ R ∧
𝐵 ∈ R
∧ 𝐶 ∈
R) → (𝐴
<R 𝐵 ↔ (𝐶 +R 𝐴) <R
(𝐶
+R 𝐵))) |