Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltasrg GIF version

Theorem ltasrg 7585
 Description: Ordering property of addition. (Contributed by NM, 10-May-1996.)
Assertion
Ref Expression
ltasrg ((𝐴R𝐵R𝐶R) → (𝐴 <R 𝐵 ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵)))

Proof of Theorem ltasrg
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑠 𝑟 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7542 . . 3 R = ((P × P) / ~R )
2 oveq1 5781 . . . . 5 ([⟨𝑣, 𝑢⟩] ~R = 𝐶 → ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) = (𝐶 +R [⟨𝑥, 𝑦⟩] ~R ))
3 oveq1 5781 . . . . 5 ([⟨𝑣, 𝑢⟩] ~R = 𝐶 → ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) = (𝐶 +R [⟨𝑧, 𝑤⟩] ~R ))
42, 3breq12d 3942 . . . 4 ([⟨𝑣, 𝑢⟩] ~R = 𝐶 → (([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) <R ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) ↔ (𝐶 +R [⟨𝑥, 𝑦⟩] ~R ) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R )))
54bibi2d 231 . . 3 ([⟨𝑣, 𝑢⟩] ~R = 𝐶 → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) <R ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R )) ↔ ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝐶 +R [⟨𝑥, 𝑦⟩] ~R ) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R ))))
6 breq1 3932 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R𝐴 <R [⟨𝑧, 𝑤⟩] ~R ))
7 oveq2 5782 . . . . 5 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (𝐶 +R [⟨𝑥, 𝑦⟩] ~R ) = (𝐶 +R 𝐴))
87breq1d 3939 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ((𝐶 +R [⟨𝑥, 𝑦⟩] ~R ) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R ) ↔ (𝐶 +R 𝐴) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R )))
96, 8bibi12d 234 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝐶 +R [⟨𝑥, 𝑦⟩] ~R ) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R )) ↔ (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝐶 +R 𝐴) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R ))))
10 breq2 3933 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (𝐴 <R [⟨𝑧, 𝑤⟩] ~R𝐴 <R 𝐵))
11 oveq2 5782 . . . . 5 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (𝐶 +R [⟨𝑧, 𝑤⟩] ~R ) = (𝐶 +R 𝐵))
1211breq2d 3941 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((𝐶 +R 𝐴) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R ) ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵)))
1310, 12bibi12d 234 . . 3 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((𝐴 <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝐶 +R 𝐴) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R )) ↔ (𝐴 <R 𝐵 ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵))))
14 simp2l 1007 . . . . . . 7 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → 𝑥P)
15 simp3r 1010 . . . . . . 7 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → 𝑤P)
16 addclpr 7352 . . . . . . 7 ((𝑥P𝑤P) → (𝑥 +P 𝑤) ∈ P)
1714, 15, 16syl2anc 408 . . . . . 6 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑥 +P 𝑤) ∈ P)
18 simp2r 1008 . . . . . . 7 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → 𝑦P)
19 simp3l 1009 . . . . . . 7 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → 𝑧P)
20 addclpr 7352 . . . . . . 7 ((𝑦P𝑧P) → (𝑦 +P 𝑧) ∈ P)
2118, 19, 20syl2anc 408 . . . . . 6 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑦 +P 𝑧) ∈ P)
22 addclpr 7352 . . . . . . 7 ((𝑣P𝑢P) → (𝑣 +P 𝑢) ∈ P)
23223ad2ant1 1002 . . . . . 6 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑣 +P 𝑢) ∈ P)
24 ltaprg 7434 . . . . . 6 (((𝑥 +P 𝑤) ∈ P ∧ (𝑦 +P 𝑧) ∈ P ∧ (𝑣 +P 𝑢) ∈ P) → ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ↔ ((𝑣 +P 𝑢) +P (𝑥 +P 𝑤))<P ((𝑣 +P 𝑢) +P (𝑦 +P 𝑧))))
2517, 21, 23, 24syl3anc 1216 . . . . 5 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ↔ ((𝑣 +P 𝑢) +P (𝑥 +P 𝑤))<P ((𝑣 +P 𝑢) +P (𝑦 +P 𝑧))))
26 ltsrprg 7562 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P 𝑤)<P (𝑦 +P 𝑧)))
27263adant1 999 . . . . 5 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P 𝑤)<P (𝑦 +P 𝑧)))
28 simp1l 1005 . . . . . . . 8 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → 𝑣P)
29 addclpr 7352 . . . . . . . 8 ((𝑣P𝑥P) → (𝑣 +P 𝑥) ∈ P)
3028, 14, 29syl2anc 408 . . . . . . 7 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑣 +P 𝑥) ∈ P)
31 simp1r 1006 . . . . . . . 8 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → 𝑢P)
32 addclpr 7352 . . . . . . . 8 ((𝑢P𝑦P) → (𝑢 +P 𝑦) ∈ P)
3331, 18, 32syl2anc 408 . . . . . . 7 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑢 +P 𝑦) ∈ P)
34 addclpr 7352 . . . . . . . 8 ((𝑣P𝑧P) → (𝑣 +P 𝑧) ∈ P)
3528, 19, 34syl2anc 408 . . . . . . 7 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑣 +P 𝑧) ∈ P)
36 addclpr 7352 . . . . . . . 8 ((𝑢P𝑤P) → (𝑢 +P 𝑤) ∈ P)
3731, 15, 36syl2anc 408 . . . . . . 7 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑢 +P 𝑤) ∈ P)
38 ltsrprg 7562 . . . . . . 7 ((((𝑣 +P 𝑥) ∈ P ∧ (𝑢 +P 𝑦) ∈ P) ∧ ((𝑣 +P 𝑧) ∈ P ∧ (𝑢 +P 𝑤) ∈ P)) → ([⟨(𝑣 +P 𝑥), (𝑢 +P 𝑦)⟩] ~R <R [⟨(𝑣 +P 𝑧), (𝑢 +P 𝑤)⟩] ~R ↔ ((𝑣 +P 𝑥) +P (𝑢 +P 𝑤))<P ((𝑢 +P 𝑦) +P (𝑣 +P 𝑧))))
3930, 33, 35, 37, 38syl22anc 1217 . . . . . 6 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨(𝑣 +P 𝑥), (𝑢 +P 𝑦)⟩] ~R <R [⟨(𝑣 +P 𝑧), (𝑢 +P 𝑤)⟩] ~R ↔ ((𝑣 +P 𝑥) +P (𝑢 +P 𝑤))<P ((𝑢 +P 𝑦) +P (𝑣 +P 𝑧))))
40 addcomprg 7393 . . . . . . . . 9 ((𝑟P𝑠P) → (𝑟 +P 𝑠) = (𝑠 +P 𝑟))
4140adantl 275 . . . . . . . 8 ((((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑟P𝑠P)) → (𝑟 +P 𝑠) = (𝑠 +P 𝑟))
42 addassprg 7394 . . . . . . . . 9 ((𝑟P𝑠P𝑡P) → ((𝑟 +P 𝑠) +P 𝑡) = (𝑟 +P (𝑠 +P 𝑡)))
4342adantl 275 . . . . . . . 8 ((((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑟P𝑠P𝑡P)) → ((𝑟 +P 𝑠) +P 𝑡) = (𝑟 +P (𝑠 +P 𝑡)))
44 addclpr 7352 . . . . . . . . 9 ((𝑟P𝑠P) → (𝑟 +P 𝑠) ∈ P)
4544adantl 275 . . . . . . . 8 ((((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑟P𝑠P)) → (𝑟 +P 𝑠) ∈ P)
4628, 14, 31, 41, 43, 15, 45caov4d 5955 . . . . . . 7 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑣 +P 𝑥) +P (𝑢 +P 𝑤)) = ((𝑣 +P 𝑢) +P (𝑥 +P 𝑤)))
4741, 33, 35caovcomd 5927 . . . . . . . 8 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑢 +P 𝑦) +P (𝑣 +P 𝑧)) = ((𝑣 +P 𝑧) +P (𝑢 +P 𝑦)))
4828, 19, 31, 41, 43, 18, 45caov42d 5957 . . . . . . . 8 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑣 +P 𝑧) +P (𝑢 +P 𝑦)) = ((𝑣 +P 𝑢) +P (𝑦 +P 𝑧)))
4947, 48eqtrd 2172 . . . . . . 7 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑢 +P 𝑦) +P (𝑣 +P 𝑧)) = ((𝑣 +P 𝑢) +P (𝑦 +P 𝑧)))
5046, 49breq12d 3942 . . . . . 6 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (((𝑣 +P 𝑥) +P (𝑢 +P 𝑤))<P ((𝑢 +P 𝑦) +P (𝑣 +P 𝑧)) ↔ ((𝑣 +P 𝑢) +P (𝑥 +P 𝑤))<P ((𝑣 +P 𝑢) +P (𝑦 +P 𝑧))))
5139, 50bitrd 187 . . . . 5 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨(𝑣 +P 𝑥), (𝑢 +P 𝑦)⟩] ~R <R [⟨(𝑣 +P 𝑧), (𝑢 +P 𝑤)⟩] ~R ↔ ((𝑣 +P 𝑢) +P (𝑥 +P 𝑤))<P ((𝑣 +P 𝑢) +P (𝑦 +P 𝑧))))
5225, 27, 513bitr4d 219 . . . 4 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ [⟨(𝑣 +P 𝑥), (𝑢 +P 𝑦)⟩] ~R <R [⟨(𝑣 +P 𝑧), (𝑢 +P 𝑤)⟩] ~R ))
53 addsrpr 7560 . . . . . 6 (((𝑣P𝑢P) ∧ (𝑥P𝑦P)) → ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) = [⟨(𝑣 +P 𝑥), (𝑢 +P 𝑦)⟩] ~R )
54533adant3 1001 . . . . 5 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) = [⟨(𝑣 +P 𝑥), (𝑢 +P 𝑦)⟩] ~R )
55 addsrpr 7560 . . . . . 6 (((𝑣P𝑢P) ∧ (𝑧P𝑤P)) → ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) = [⟨(𝑣 +P 𝑧), (𝑢 +P 𝑤)⟩] ~R )
56553adant2 1000 . . . . 5 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) = [⟨(𝑣 +P 𝑧), (𝑢 +P 𝑤)⟩] ~R )
5754, 56breq12d 3942 . . . 4 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) <R ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) ↔ [⟨(𝑣 +P 𝑥), (𝑢 +P 𝑦)⟩] ~R <R [⟨(𝑣 +P 𝑧), (𝑢 +P 𝑤)⟩] ~R ))
5852, 57bitr4d 190 . . 3 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) <R ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R )))
591, 5, 9, 13, 583ecoptocl 6518 . 2 ((𝐶R𝐴R𝐵R) → (𝐴 <R 𝐵 ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵)))
60593coml 1188 1 ((𝐴R𝐵R𝐶R) → (𝐴 <R 𝐵 ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 962   = wceq 1331   ∈ wcel 1480  ⟨cop 3530   class class class wbr 3929  (class class class)co 5774  [cec 6427  Pcnp 7106   +P cpp 7108
 Copyright terms: Public domain W3C validator