ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltasrg GIF version

Theorem ltasrg 7602
Description: Ordering property of addition. (Contributed by NM, 10-May-1996.)
Assertion
Ref Expression
ltasrg ((𝐴R𝐵R𝐶R) → (𝐴 <R 𝐵 ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵)))

Proof of Theorem ltasrg
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑠 𝑟 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7559 . . 3 R = ((P × P) / ~R )
2 oveq1 5789 . . . . 5 ([⟨𝑣, 𝑢⟩] ~R = 𝐶 → ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) = (𝐶 +R [⟨𝑥, 𝑦⟩] ~R ))
3 oveq1 5789 . . . . 5 ([⟨𝑣, 𝑢⟩] ~R = 𝐶 → ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) = (𝐶 +R [⟨𝑧, 𝑤⟩] ~R ))
42, 3breq12d 3950 . . . 4 ([⟨𝑣, 𝑢⟩] ~R = 𝐶 → (([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) <R ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) ↔ (𝐶 +R [⟨𝑥, 𝑦⟩] ~R ) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R )))
54bibi2d 231 . . 3 ([⟨𝑣, 𝑢⟩] ~R = 𝐶 → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) <R ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R )) ↔ ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝐶 +R [⟨𝑥, 𝑦⟩] ~R ) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R ))))
6 breq1 3940 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R𝐴 <R [⟨𝑧, 𝑤⟩] ~R ))
7 oveq2 5790 . . . . 5 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (𝐶 +R [⟨𝑥, 𝑦⟩] ~R ) = (𝐶 +R 𝐴))
87breq1d 3947 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ((𝐶 +R [⟨𝑥, 𝑦⟩] ~R ) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R ) ↔ (𝐶 +R 𝐴) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R )))
96, 8bibi12d 234 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝐶 +R [⟨𝑥, 𝑦⟩] ~R ) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R )) ↔ (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝐶 +R 𝐴) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R ))))
10 breq2 3941 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (𝐴 <R [⟨𝑧, 𝑤⟩] ~R𝐴 <R 𝐵))
11 oveq2 5790 . . . . 5 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (𝐶 +R [⟨𝑧, 𝑤⟩] ~R ) = (𝐶 +R 𝐵))
1211breq2d 3949 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((𝐶 +R 𝐴) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R ) ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵)))
1310, 12bibi12d 234 . . 3 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((𝐴 <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝐶 +R 𝐴) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R )) ↔ (𝐴 <R 𝐵 ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵))))
14 simp2l 1008 . . . . . . 7 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → 𝑥P)
15 simp3r 1011 . . . . . . 7 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → 𝑤P)
16 addclpr 7369 . . . . . . 7 ((𝑥P𝑤P) → (𝑥 +P 𝑤) ∈ P)
1714, 15, 16syl2anc 409 . . . . . 6 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑥 +P 𝑤) ∈ P)
18 simp2r 1009 . . . . . . 7 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → 𝑦P)
19 simp3l 1010 . . . . . . 7 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → 𝑧P)
20 addclpr 7369 . . . . . . 7 ((𝑦P𝑧P) → (𝑦 +P 𝑧) ∈ P)
2118, 19, 20syl2anc 409 . . . . . 6 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑦 +P 𝑧) ∈ P)
22 addclpr 7369 . . . . . . 7 ((𝑣P𝑢P) → (𝑣 +P 𝑢) ∈ P)
23223ad2ant1 1003 . . . . . 6 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑣 +P 𝑢) ∈ P)
24 ltaprg 7451 . . . . . 6 (((𝑥 +P 𝑤) ∈ P ∧ (𝑦 +P 𝑧) ∈ P ∧ (𝑣 +P 𝑢) ∈ P) → ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ↔ ((𝑣 +P 𝑢) +P (𝑥 +P 𝑤))<P ((𝑣 +P 𝑢) +P (𝑦 +P 𝑧))))
2517, 21, 23, 24syl3anc 1217 . . . . 5 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ↔ ((𝑣 +P 𝑢) +P (𝑥 +P 𝑤))<P ((𝑣 +P 𝑢) +P (𝑦 +P 𝑧))))
26 ltsrprg 7579 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P 𝑤)<P (𝑦 +P 𝑧)))
27263adant1 1000 . . . . 5 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P 𝑤)<P (𝑦 +P 𝑧)))
28 simp1l 1006 . . . . . . . 8 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → 𝑣P)
29 addclpr 7369 . . . . . . . 8 ((𝑣P𝑥P) → (𝑣 +P 𝑥) ∈ P)
3028, 14, 29syl2anc 409 . . . . . . 7 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑣 +P 𝑥) ∈ P)
31 simp1r 1007 . . . . . . . 8 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → 𝑢P)
32 addclpr 7369 . . . . . . . 8 ((𝑢P𝑦P) → (𝑢 +P 𝑦) ∈ P)
3331, 18, 32syl2anc 409 . . . . . . 7 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑢 +P 𝑦) ∈ P)
34 addclpr 7369 . . . . . . . 8 ((𝑣P𝑧P) → (𝑣 +P 𝑧) ∈ P)
3528, 19, 34syl2anc 409 . . . . . . 7 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑣 +P 𝑧) ∈ P)
36 addclpr 7369 . . . . . . . 8 ((𝑢P𝑤P) → (𝑢 +P 𝑤) ∈ P)
3731, 15, 36syl2anc 409 . . . . . . 7 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑢 +P 𝑤) ∈ P)
38 ltsrprg 7579 . . . . . . 7 ((((𝑣 +P 𝑥) ∈ P ∧ (𝑢 +P 𝑦) ∈ P) ∧ ((𝑣 +P 𝑧) ∈ P ∧ (𝑢 +P 𝑤) ∈ P)) → ([⟨(𝑣 +P 𝑥), (𝑢 +P 𝑦)⟩] ~R <R [⟨(𝑣 +P 𝑧), (𝑢 +P 𝑤)⟩] ~R ↔ ((𝑣 +P 𝑥) +P (𝑢 +P 𝑤))<P ((𝑢 +P 𝑦) +P (𝑣 +P 𝑧))))
3930, 33, 35, 37, 38syl22anc 1218 . . . . . 6 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨(𝑣 +P 𝑥), (𝑢 +P 𝑦)⟩] ~R <R [⟨(𝑣 +P 𝑧), (𝑢 +P 𝑤)⟩] ~R ↔ ((𝑣 +P 𝑥) +P (𝑢 +P 𝑤))<P ((𝑢 +P 𝑦) +P (𝑣 +P 𝑧))))
40 addcomprg 7410 . . . . . . . . 9 ((𝑟P𝑠P) → (𝑟 +P 𝑠) = (𝑠 +P 𝑟))
4140adantl 275 . . . . . . . 8 ((((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑟P𝑠P)) → (𝑟 +P 𝑠) = (𝑠 +P 𝑟))
42 addassprg 7411 . . . . . . . . 9 ((𝑟P𝑠P𝑡P) → ((𝑟 +P 𝑠) +P 𝑡) = (𝑟 +P (𝑠 +P 𝑡)))
4342adantl 275 . . . . . . . 8 ((((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑟P𝑠P𝑡P)) → ((𝑟 +P 𝑠) +P 𝑡) = (𝑟 +P (𝑠 +P 𝑡)))
44 addclpr 7369 . . . . . . . . 9 ((𝑟P𝑠P) → (𝑟 +P 𝑠) ∈ P)
4544adantl 275 . . . . . . . 8 ((((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑟P𝑠P)) → (𝑟 +P 𝑠) ∈ P)
4628, 14, 31, 41, 43, 15, 45caov4d 5963 . . . . . . 7 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑣 +P 𝑥) +P (𝑢 +P 𝑤)) = ((𝑣 +P 𝑢) +P (𝑥 +P 𝑤)))
4741, 33, 35caovcomd 5935 . . . . . . . 8 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑢 +P 𝑦) +P (𝑣 +P 𝑧)) = ((𝑣 +P 𝑧) +P (𝑢 +P 𝑦)))
4828, 19, 31, 41, 43, 18, 45caov42d 5965 . . . . . . . 8 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑣 +P 𝑧) +P (𝑢 +P 𝑦)) = ((𝑣 +P 𝑢) +P (𝑦 +P 𝑧)))
4947, 48eqtrd 2173 . . . . . . 7 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑢 +P 𝑦) +P (𝑣 +P 𝑧)) = ((𝑣 +P 𝑢) +P (𝑦 +P 𝑧)))
5046, 49breq12d 3950 . . . . . 6 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (((𝑣 +P 𝑥) +P (𝑢 +P 𝑤))<P ((𝑢 +P 𝑦) +P (𝑣 +P 𝑧)) ↔ ((𝑣 +P 𝑢) +P (𝑥 +P 𝑤))<P ((𝑣 +P 𝑢) +P (𝑦 +P 𝑧))))
5139, 50bitrd 187 . . . . 5 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨(𝑣 +P 𝑥), (𝑢 +P 𝑦)⟩] ~R <R [⟨(𝑣 +P 𝑧), (𝑢 +P 𝑤)⟩] ~R ↔ ((𝑣 +P 𝑢) +P (𝑥 +P 𝑤))<P ((𝑣 +P 𝑢) +P (𝑦 +P 𝑧))))
5225, 27, 513bitr4d 219 . . . 4 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ [⟨(𝑣 +P 𝑥), (𝑢 +P 𝑦)⟩] ~R <R [⟨(𝑣 +P 𝑧), (𝑢 +P 𝑤)⟩] ~R ))
53 addsrpr 7577 . . . . . 6 (((𝑣P𝑢P) ∧ (𝑥P𝑦P)) → ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) = [⟨(𝑣 +P 𝑥), (𝑢 +P 𝑦)⟩] ~R )
54533adant3 1002 . . . . 5 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) = [⟨(𝑣 +P 𝑥), (𝑢 +P 𝑦)⟩] ~R )
55 addsrpr 7577 . . . . . 6 (((𝑣P𝑢P) ∧ (𝑧P𝑤P)) → ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) = [⟨(𝑣 +P 𝑧), (𝑢 +P 𝑤)⟩] ~R )
56553adant2 1001 . . . . 5 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) = [⟨(𝑣 +P 𝑧), (𝑢 +P 𝑤)⟩] ~R )
5754, 56breq12d 3950 . . . 4 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) <R ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) ↔ [⟨(𝑣 +P 𝑥), (𝑢 +P 𝑦)⟩] ~R <R [⟨(𝑣 +P 𝑧), (𝑢 +P 𝑤)⟩] ~R ))
5852, 57bitr4d 190 . . 3 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) <R ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R )))
591, 5, 9, 13, 583ecoptocl 6526 . 2 ((𝐶R𝐴R𝐵R) → (𝐴 <R 𝐵 ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵)))
60593coml 1189 1 ((𝐴R𝐵R𝐶R) → (𝐴 <R 𝐵 ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1332  wcel 1481  cop 3535   class class class wbr 3937  (class class class)co 5782  [cec 6435  Pcnp 7123   +P cpp 7125  <P cltp 7127   ~R cer 7128  Rcnr 7129   +R cplr 7133   <R cltr 7135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-iplp 7300  df-iltp 7302  df-enr 7558  df-nr 7559  df-plr 7560  df-ltr 7562
This theorem is referenced by:  addgt0sr  7607  ltadd1sr  7608  caucvgsrlemoffcau  7630  caucvgsrlemoffgt1  7631  caucvgsrlemoffres  7632  caucvgsr  7634  ltpsrprg  7635  mappsrprg  7636  map2psrprg  7637  suplocsrlempr  7639  axpre-ltadd  7718
  Copyright terms: Public domain W3C validator