ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltasrg GIF version

Theorem ltasrg 7800
Description: Ordering property of addition. (Contributed by NM, 10-May-1996.)
Assertion
Ref Expression
ltasrg ((𝐴R𝐵R𝐶R) → (𝐴 <R 𝐵 ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵)))

Proof of Theorem ltasrg
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑠 𝑟 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7757 . . 3 R = ((P × P) / ~R )
2 oveq1 5904 . . . . 5 ([⟨𝑣, 𝑢⟩] ~R = 𝐶 → ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) = (𝐶 +R [⟨𝑥, 𝑦⟩] ~R ))
3 oveq1 5904 . . . . 5 ([⟨𝑣, 𝑢⟩] ~R = 𝐶 → ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) = (𝐶 +R [⟨𝑧, 𝑤⟩] ~R ))
42, 3breq12d 4031 . . . 4 ([⟨𝑣, 𝑢⟩] ~R = 𝐶 → (([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) <R ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) ↔ (𝐶 +R [⟨𝑥, 𝑦⟩] ~R ) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R )))
54bibi2d 232 . . 3 ([⟨𝑣, 𝑢⟩] ~R = 𝐶 → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) <R ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R )) ↔ ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝐶 +R [⟨𝑥, 𝑦⟩] ~R ) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R ))))
6 breq1 4021 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R𝐴 <R [⟨𝑧, 𝑤⟩] ~R ))
7 oveq2 5905 . . . . 5 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (𝐶 +R [⟨𝑥, 𝑦⟩] ~R ) = (𝐶 +R 𝐴))
87breq1d 4028 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ((𝐶 +R [⟨𝑥, 𝑦⟩] ~R ) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R ) ↔ (𝐶 +R 𝐴) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R )))
96, 8bibi12d 235 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝐶 +R [⟨𝑥, 𝑦⟩] ~R ) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R )) ↔ (𝐴 <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝐶 +R 𝐴) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R ))))
10 breq2 4022 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (𝐴 <R [⟨𝑧, 𝑤⟩] ~R𝐴 <R 𝐵))
11 oveq2 5905 . . . . 5 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (𝐶 +R [⟨𝑧, 𝑤⟩] ~R ) = (𝐶 +R 𝐵))
1211breq2d 4030 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((𝐶 +R 𝐴) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R ) ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵)))
1310, 12bibi12d 235 . . 3 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((𝐴 <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝐶 +R 𝐴) <R (𝐶 +R [⟨𝑧, 𝑤⟩] ~R )) ↔ (𝐴 <R 𝐵 ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵))))
14 simp2l 1025 . . . . . . 7 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → 𝑥P)
15 simp3r 1028 . . . . . . 7 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → 𝑤P)
16 addclpr 7567 . . . . . . 7 ((𝑥P𝑤P) → (𝑥 +P 𝑤) ∈ P)
1714, 15, 16syl2anc 411 . . . . . 6 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑥 +P 𝑤) ∈ P)
18 simp2r 1026 . . . . . . 7 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → 𝑦P)
19 simp3l 1027 . . . . . . 7 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → 𝑧P)
20 addclpr 7567 . . . . . . 7 ((𝑦P𝑧P) → (𝑦 +P 𝑧) ∈ P)
2118, 19, 20syl2anc 411 . . . . . 6 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑦 +P 𝑧) ∈ P)
22 addclpr 7567 . . . . . . 7 ((𝑣P𝑢P) → (𝑣 +P 𝑢) ∈ P)
23223ad2ant1 1020 . . . . . 6 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑣 +P 𝑢) ∈ P)
24 ltaprg 7649 . . . . . 6 (((𝑥 +P 𝑤) ∈ P ∧ (𝑦 +P 𝑧) ∈ P ∧ (𝑣 +P 𝑢) ∈ P) → ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ↔ ((𝑣 +P 𝑢) +P (𝑥 +P 𝑤))<P ((𝑣 +P 𝑢) +P (𝑦 +P 𝑧))))
2517, 21, 23, 24syl3anc 1249 . . . . 5 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 +P 𝑤)<P (𝑦 +P 𝑧) ↔ ((𝑣 +P 𝑢) +P (𝑥 +P 𝑤))<P ((𝑣 +P 𝑢) +P (𝑦 +P 𝑧))))
26 ltsrprg 7777 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P 𝑤)<P (𝑦 +P 𝑧)))
27263adant1 1017 . . . . 5 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ (𝑥 +P 𝑤)<P (𝑦 +P 𝑧)))
28 simp1l 1023 . . . . . . . 8 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → 𝑣P)
29 addclpr 7567 . . . . . . . 8 ((𝑣P𝑥P) → (𝑣 +P 𝑥) ∈ P)
3028, 14, 29syl2anc 411 . . . . . . 7 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑣 +P 𝑥) ∈ P)
31 simp1r 1024 . . . . . . . 8 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → 𝑢P)
32 addclpr 7567 . . . . . . . 8 ((𝑢P𝑦P) → (𝑢 +P 𝑦) ∈ P)
3331, 18, 32syl2anc 411 . . . . . . 7 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑢 +P 𝑦) ∈ P)
34 addclpr 7567 . . . . . . . 8 ((𝑣P𝑧P) → (𝑣 +P 𝑧) ∈ P)
3528, 19, 34syl2anc 411 . . . . . . 7 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑣 +P 𝑧) ∈ P)
36 addclpr 7567 . . . . . . . 8 ((𝑢P𝑤P) → (𝑢 +P 𝑤) ∈ P)
3731, 15, 36syl2anc 411 . . . . . . 7 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑢 +P 𝑤) ∈ P)
38 ltsrprg 7777 . . . . . . 7 ((((𝑣 +P 𝑥) ∈ P ∧ (𝑢 +P 𝑦) ∈ P) ∧ ((𝑣 +P 𝑧) ∈ P ∧ (𝑢 +P 𝑤) ∈ P)) → ([⟨(𝑣 +P 𝑥), (𝑢 +P 𝑦)⟩] ~R <R [⟨(𝑣 +P 𝑧), (𝑢 +P 𝑤)⟩] ~R ↔ ((𝑣 +P 𝑥) +P (𝑢 +P 𝑤))<P ((𝑢 +P 𝑦) +P (𝑣 +P 𝑧))))
3930, 33, 35, 37, 38syl22anc 1250 . . . . . 6 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨(𝑣 +P 𝑥), (𝑢 +P 𝑦)⟩] ~R <R [⟨(𝑣 +P 𝑧), (𝑢 +P 𝑤)⟩] ~R ↔ ((𝑣 +P 𝑥) +P (𝑢 +P 𝑤))<P ((𝑢 +P 𝑦) +P (𝑣 +P 𝑧))))
40 addcomprg 7608 . . . . . . . . 9 ((𝑟P𝑠P) → (𝑟 +P 𝑠) = (𝑠 +P 𝑟))
4140adantl 277 . . . . . . . 8 ((((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑟P𝑠P)) → (𝑟 +P 𝑠) = (𝑠 +P 𝑟))
42 addassprg 7609 . . . . . . . . 9 ((𝑟P𝑠P𝑡P) → ((𝑟 +P 𝑠) +P 𝑡) = (𝑟 +P (𝑠 +P 𝑡)))
4342adantl 277 . . . . . . . 8 ((((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑟P𝑠P𝑡P)) → ((𝑟 +P 𝑠) +P 𝑡) = (𝑟 +P (𝑠 +P 𝑡)))
44 addclpr 7567 . . . . . . . . 9 ((𝑟P𝑠P) → (𝑟 +P 𝑠) ∈ P)
4544adantl 277 . . . . . . . 8 ((((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑟P𝑠P)) → (𝑟 +P 𝑠) ∈ P)
4628, 14, 31, 41, 43, 15, 45caov4d 6082 . . . . . . 7 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑣 +P 𝑥) +P (𝑢 +P 𝑤)) = ((𝑣 +P 𝑢) +P (𝑥 +P 𝑤)))
4741, 33, 35caovcomd 6054 . . . . . . . 8 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑢 +P 𝑦) +P (𝑣 +P 𝑧)) = ((𝑣 +P 𝑧) +P (𝑢 +P 𝑦)))
4828, 19, 31, 41, 43, 18, 45caov42d 6084 . . . . . . . 8 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑣 +P 𝑧) +P (𝑢 +P 𝑦)) = ((𝑣 +P 𝑢) +P (𝑦 +P 𝑧)))
4947, 48eqtrd 2222 . . . . . . 7 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑢 +P 𝑦) +P (𝑣 +P 𝑧)) = ((𝑣 +P 𝑢) +P (𝑦 +P 𝑧)))
5046, 49breq12d 4031 . . . . . 6 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (((𝑣 +P 𝑥) +P (𝑢 +P 𝑤))<P ((𝑢 +P 𝑦) +P (𝑣 +P 𝑧)) ↔ ((𝑣 +P 𝑢) +P (𝑥 +P 𝑤))<P ((𝑣 +P 𝑢) +P (𝑦 +P 𝑧))))
5139, 50bitrd 188 . . . . 5 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨(𝑣 +P 𝑥), (𝑢 +P 𝑦)⟩] ~R <R [⟨(𝑣 +P 𝑧), (𝑢 +P 𝑤)⟩] ~R ↔ ((𝑣 +P 𝑢) +P (𝑥 +P 𝑤))<P ((𝑣 +P 𝑢) +P (𝑦 +P 𝑧))))
5225, 27, 513bitr4d 220 . . . 4 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ [⟨(𝑣 +P 𝑥), (𝑢 +P 𝑦)⟩] ~R <R [⟨(𝑣 +P 𝑧), (𝑢 +P 𝑤)⟩] ~R ))
53 addsrpr 7775 . . . . . 6 (((𝑣P𝑢P) ∧ (𝑥P𝑦P)) → ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) = [⟨(𝑣 +P 𝑥), (𝑢 +P 𝑦)⟩] ~R )
54533adant3 1019 . . . . 5 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) = [⟨(𝑣 +P 𝑥), (𝑢 +P 𝑦)⟩] ~R )
55 addsrpr 7775 . . . . . 6 (((𝑣P𝑢P) ∧ (𝑧P𝑤P)) → ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) = [⟨(𝑣 +P 𝑧), (𝑢 +P 𝑤)⟩] ~R )
56553adant2 1018 . . . . 5 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) = [⟨(𝑣 +P 𝑧), (𝑢 +P 𝑤)⟩] ~R )
5754, 56breq12d 4031 . . . 4 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) <R ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) ↔ [⟨(𝑣 +P 𝑥), (𝑢 +P 𝑦)⟩] ~R <R [⟨(𝑣 +P 𝑧), (𝑢 +P 𝑤)⟩] ~R ))
5852, 57bitr4d 191 . . 3 (((𝑣P𝑢P) ∧ (𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R <R [⟨𝑧, 𝑤⟩] ~R ↔ ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) <R ([⟨𝑣, 𝑢⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R )))
591, 5, 9, 13, 583ecoptocl 6651 . 2 ((𝐶R𝐴R𝐵R) → (𝐴 <R 𝐵 ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵)))
60593coml 1212 1 ((𝐴R𝐵R𝐶R) → (𝐴 <R 𝐵 ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2160  cop 3610   class class class wbr 4018  (class class class)co 5897  [cec 6558  Pcnp 7321   +P cpp 7323  <P cltp 7325   ~R cer 7326  Rcnr 7327   +R cplr 7331   <R cltr 7333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-eprel 4307  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-irdg 6396  df-1o 6442  df-2o 6443  df-oadd 6446  df-omul 6447  df-er 6560  df-ec 6562  df-qs 6566  df-ni 7334  df-pli 7335  df-mi 7336  df-lti 7337  df-plpq 7374  df-mpq 7375  df-enq 7377  df-nqqs 7378  df-plqqs 7379  df-mqqs 7380  df-1nqqs 7381  df-rq 7382  df-ltnqqs 7383  df-enq0 7454  df-nq0 7455  df-0nq0 7456  df-plq0 7457  df-mq0 7458  df-inp 7496  df-iplp 7498  df-iltp 7500  df-enr 7756  df-nr 7757  df-plr 7758  df-ltr 7760
This theorem is referenced by:  addgt0sr  7805  ltadd1sr  7806  caucvgsrlemoffcau  7828  caucvgsrlemoffgt1  7829  caucvgsrlemoffres  7830  caucvgsr  7832  ltpsrprg  7833  mappsrprg  7834  map2psrprg  7835  suplocsrlempr  7837  axpre-ltadd  7916
  Copyright terms: Public domain W3C validator