ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addassnq0 GIF version

Theorem addassnq0 7452
Description: Addition of nonnegative fractions is associative. (Contributed by Jim Kingdon, 29-Nov-2019.)
Assertion
Ref Expression
addassnq0 ((𝐴Q0𝐵Q0𝐶Q0) → ((𝐴 +Q0 𝐵) +Q0 𝐶) = (𝐴 +Q0 (𝐵 +Q0 𝐶)))

Proof of Theorem addassnq0
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nq0 7415 . . . 4 Q0 = ((ω × N) / ~Q0 )
2 oveq2 5877 . . . . . . 7 ([⟨𝑧, 𝑤⟩] ~Q0 = 𝐵 → (𝐴 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = (𝐴 +Q0 𝐵))
32oveq1d 5884 . . . . . 6 ([⟨𝑧, 𝑤⟩] ~Q0 = 𝐵 → ((𝐴 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = ((𝐴 +Q0 𝐵) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))
4 oveq1 5876 . . . . . . 7 ([⟨𝑧, 𝑤⟩] ~Q0 = 𝐵 → ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = (𝐵 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))
54oveq2d 5885 . . . . . 6 ([⟨𝑧, 𝑤⟩] ~Q0 = 𝐵 → (𝐴 +Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = (𝐴 +Q0 (𝐵 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )))
63, 5eqeq12d 2192 . . . . 5 ([⟨𝑧, 𝑤⟩] ~Q0 = 𝐵 → (((𝐴 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = (𝐴 +Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) ↔ ((𝐴 +Q0 𝐵) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = (𝐴 +Q0 (𝐵 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))))
76imbi2d 230 . . . 4 ([⟨𝑧, 𝑤⟩] ~Q0 = 𝐵 → ((𝐴Q0 → ((𝐴 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = (𝐴 +Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))) ↔ (𝐴Q0 → ((𝐴 +Q0 𝐵) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = (𝐴 +Q0 (𝐵 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )))))
8 oveq2 5877 . . . . . 6 ([⟨𝑣, 𝑢⟩] ~Q0 = 𝐶 → ((𝐴 +Q0 𝐵) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = ((𝐴 +Q0 𝐵) +Q0 𝐶))
9 oveq2 5877 . . . . . . 7 ([⟨𝑣, 𝑢⟩] ~Q0 = 𝐶 → (𝐵 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = (𝐵 +Q0 𝐶))
109oveq2d 5885 . . . . . 6 ([⟨𝑣, 𝑢⟩] ~Q0 = 𝐶 → (𝐴 +Q0 (𝐵 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = (𝐴 +Q0 (𝐵 +Q0 𝐶)))
118, 10eqeq12d 2192 . . . . 5 ([⟨𝑣, 𝑢⟩] ~Q0 = 𝐶 → (((𝐴 +Q0 𝐵) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = (𝐴 +Q0 (𝐵 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) ↔ ((𝐴 +Q0 𝐵) +Q0 𝐶) = (𝐴 +Q0 (𝐵 +Q0 𝐶))))
1211imbi2d 230 . . . 4 ([⟨𝑣, 𝑢⟩] ~Q0 = 𝐶 → ((𝐴Q0 → ((𝐴 +Q0 𝐵) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = (𝐴 +Q0 (𝐵 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))) ↔ (𝐴Q0 → ((𝐴 +Q0 𝐵) +Q0 𝐶) = (𝐴 +Q0 (𝐵 +Q0 𝐶)))))
13 oveq1 5876 . . . . . . . . 9 ([⟨𝑥, 𝑦⟩] ~Q0 = 𝐴 → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = (𝐴 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
1413oveq1d 5884 . . . . . . . 8 ([⟨𝑥, 𝑦⟩] ~Q0 = 𝐴 → (([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = ((𝐴 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))
15 oveq1 5876 . . . . . . . 8 ([⟨𝑥, 𝑦⟩] ~Q0 = 𝐴 → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = (𝐴 +Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )))
1614, 15eqeq12d 2192 . . . . . . 7 ([⟨𝑥, 𝑦⟩] ~Q0 = 𝐴 → ((([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) ↔ ((𝐴 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = (𝐴 +Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))))
1716imbi2d 230 . . . . . 6 ([⟨𝑥, 𝑦⟩] ~Q0 = 𝐴 → ((((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))) ↔ (((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ((𝐴 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = (𝐴 +Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )))))
18 simp1l 1021 . . . . . . . . . . . 12 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → 𝑥 ∈ ω)
19 simp2r 1024 . . . . . . . . . . . . . 14 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → 𝑤N)
20 pinn 7299 . . . . . . . . . . . . . 14 (𝑤N𝑤 ∈ ω)
2119, 20syl 14 . . . . . . . . . . . . 13 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → 𝑤 ∈ ω)
22 simp3r 1026 . . . . . . . . . . . . . 14 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → 𝑢N)
23 pinn 7299 . . . . . . . . . . . . . 14 (𝑢N𝑢 ∈ ω)
2422, 23syl 14 . . . . . . . . . . . . 13 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → 𝑢 ∈ ω)
25 nnmcl 6476 . . . . . . . . . . . . 13 ((𝑤 ∈ ω ∧ 𝑢 ∈ ω) → (𝑤 ·o 𝑢) ∈ ω)
2621, 24, 25syl2anc 411 . . . . . . . . . . . 12 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (𝑤 ·o 𝑢) ∈ ω)
27 nnmcl 6476 . . . . . . . . . . . 12 ((𝑥 ∈ ω ∧ (𝑤 ·o 𝑢) ∈ ω) → (𝑥 ·o (𝑤 ·o 𝑢)) ∈ ω)
2818, 26, 27syl2anc 411 . . . . . . . . . . 11 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (𝑥 ·o (𝑤 ·o 𝑢)) ∈ ω)
29 simp1r 1022 . . . . . . . . . . . . 13 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → 𝑦N)
30 pinn 7299 . . . . . . . . . . . . 13 (𝑦N𝑦 ∈ ω)
3129, 30syl 14 . . . . . . . . . . . 12 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → 𝑦 ∈ ω)
32 simp2l 1023 . . . . . . . . . . . . 13 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → 𝑧 ∈ ω)
33 nnmcl 6476 . . . . . . . . . . . . 13 ((𝑧 ∈ ω ∧ 𝑢 ∈ ω) → (𝑧 ·o 𝑢) ∈ ω)
3432, 24, 33syl2anc 411 . . . . . . . . . . . 12 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (𝑧 ·o 𝑢) ∈ ω)
35 nnmcl 6476 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ (𝑧 ·o 𝑢) ∈ ω) → (𝑦 ·o (𝑧 ·o 𝑢)) ∈ ω)
3631, 34, 35syl2anc 411 . . . . . . . . . . 11 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (𝑦 ·o (𝑧 ·o 𝑢)) ∈ ω)
37 simp3l 1025 . . . . . . . . . . . . 13 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → 𝑣 ∈ ω)
38 nnmcl 6476 . . . . . . . . . . . . 13 ((𝑤 ∈ ω ∧ 𝑣 ∈ ω) → (𝑤 ·o 𝑣) ∈ ω)
3921, 37, 38syl2anc 411 . . . . . . . . . . . 12 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (𝑤 ·o 𝑣) ∈ ω)
40 nnmcl 6476 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ (𝑤 ·o 𝑣) ∈ ω) → (𝑦 ·o (𝑤 ·o 𝑣)) ∈ ω)
4131, 39, 40syl2anc 411 . . . . . . . . . . 11 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (𝑦 ·o (𝑤 ·o 𝑣)) ∈ ω)
42 nnaass 6480 . . . . . . . . . . 11 (((𝑥 ·o (𝑤 ·o 𝑢)) ∈ ω ∧ (𝑦 ·o (𝑧 ·o 𝑢)) ∈ ω ∧ (𝑦 ·o (𝑤 ·o 𝑣)) ∈ ω) → (((𝑥 ·o (𝑤 ·o 𝑢)) +o (𝑦 ·o (𝑧 ·o 𝑢))) +o (𝑦 ·o (𝑤 ·o 𝑣))) = ((𝑥 ·o (𝑤 ·o 𝑢)) +o ((𝑦 ·o (𝑧 ·o 𝑢)) +o (𝑦 ·o (𝑤 ·o 𝑣)))))
4328, 36, 41, 42syl3anc 1238 . . . . . . . . . 10 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (((𝑥 ·o (𝑤 ·o 𝑢)) +o (𝑦 ·o (𝑧 ·o 𝑢))) +o (𝑦 ·o (𝑤 ·o 𝑣))) = ((𝑥 ·o (𝑤 ·o 𝑢)) +o ((𝑦 ·o (𝑧 ·o 𝑢)) +o (𝑦 ·o (𝑤 ·o 𝑣)))))
44 nnmcom 6484 . . . . . . . . . . . . 13 ((𝑓 ∈ ω ∧ 𝑔 ∈ ω) → (𝑓 ·o 𝑔) = (𝑔 ·o 𝑓))
4544adantl 277 . . . . . . . . . . . 12 ((((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → (𝑓 ·o 𝑔) = (𝑔 ·o 𝑓))
46 nndir 6485 . . . . . . . . . . . . 13 ((𝑓 ∈ ω ∧ 𝑔 ∈ ω ∧ ∈ ω) → ((𝑓 +o 𝑔) ·o ) = ((𝑓 ·o ) +o (𝑔 ·o )))
4746adantl 277 . . . . . . . . . . . 12 ((((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω ∧ ∈ ω)) → ((𝑓 +o 𝑔) ·o ) = ((𝑓 ·o ) +o (𝑔 ·o )))
48 nnmass 6482 . . . . . . . . . . . . 13 ((𝑓 ∈ ω ∧ 𝑔 ∈ ω ∧ ∈ ω) → ((𝑓 ·o 𝑔) ·o ) = (𝑓 ·o (𝑔 ·o )))
4948adantl 277 . . . . . . . . . . . 12 ((((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω ∧ ∈ ω)) → ((𝑓 ·o 𝑔) ·o ) = (𝑓 ·o (𝑔 ·o )))
50 nnmcl 6476 . . . . . . . . . . . . 13 ((𝑓 ∈ ω ∧ 𝑔 ∈ ω) → (𝑓 ·o 𝑔) ∈ ω)
5150adantl 277 . . . . . . . . . . . 12 ((((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → (𝑓 ·o 𝑔) ∈ ω)
5245, 47, 49, 51, 18, 31, 21, 32, 24caovdilemd 6060 . . . . . . . . . . 11 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)) ·o 𝑢) = ((𝑥 ·o (𝑤 ·o 𝑢)) +o (𝑦 ·o (𝑧 ·o 𝑢))))
53 nnmass 6482 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ 𝑤 ∈ ω ∧ 𝑣 ∈ ω) → ((𝑦 ·o 𝑤) ·o 𝑣) = (𝑦 ·o (𝑤 ·o 𝑣)))
5431, 21, 37, 53syl3anc 1238 . . . . . . . . . . 11 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ((𝑦 ·o 𝑤) ·o 𝑣) = (𝑦 ·o (𝑤 ·o 𝑣)))
5552, 54oveq12d 5887 . . . . . . . . . 10 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ((((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)) ·o 𝑢) +o ((𝑦 ·o 𝑤) ·o 𝑣)) = (((𝑥 ·o (𝑤 ·o 𝑢)) +o (𝑦 ·o (𝑧 ·o 𝑢))) +o (𝑦 ·o (𝑤 ·o 𝑣))))
56 nndi 6481 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ (𝑧 ·o 𝑢) ∈ ω ∧ (𝑤 ·o 𝑣) ∈ ω) → (𝑦 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣))) = ((𝑦 ·o (𝑧 ·o 𝑢)) +o (𝑦 ·o (𝑤 ·o 𝑣))))
5731, 34, 39, 56syl3anc 1238 . . . . . . . . . . 11 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (𝑦 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣))) = ((𝑦 ·o (𝑧 ·o 𝑢)) +o (𝑦 ·o (𝑤 ·o 𝑣))))
5857oveq2d 5885 . . . . . . . . . 10 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ((𝑥 ·o (𝑤 ·o 𝑢)) +o (𝑦 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)))) = ((𝑥 ·o (𝑤 ·o 𝑢)) +o ((𝑦 ·o (𝑧 ·o 𝑢)) +o (𝑦 ·o (𝑤 ·o 𝑣)))))
5943, 55, 583eqtr4d 2220 . . . . . . . . 9 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ((((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)) ·o 𝑢) +o ((𝑦 ·o 𝑤) ·o 𝑣)) = ((𝑥 ·o (𝑤 ·o 𝑢)) +o (𝑦 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)))))
60 nnmass 6482 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝑤 ∈ ω ∧ 𝑢 ∈ ω) → ((𝑦 ·o 𝑤) ·o 𝑢) = (𝑦 ·o (𝑤 ·o 𝑢)))
6131, 21, 24, 60syl3anc 1238 . . . . . . . . 9 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ((𝑦 ·o 𝑤) ·o 𝑢) = (𝑦 ·o (𝑤 ·o 𝑢)))
62 opeq12 3778 . . . . . . . . . 10 ((((((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)) ·o 𝑢) +o ((𝑦 ·o 𝑤) ·o 𝑣)) = ((𝑥 ·o (𝑤 ·o 𝑢)) +o (𝑦 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)))) ∧ ((𝑦 ·o 𝑤) ·o 𝑢) = (𝑦 ·o (𝑤 ·o 𝑢))) → ⟨((((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)) ·o 𝑢) +o ((𝑦 ·o 𝑤) ·o 𝑣)), ((𝑦 ·o 𝑤) ·o 𝑢)⟩ = ⟨((𝑥 ·o (𝑤 ·o 𝑢)) +o (𝑦 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)))), (𝑦 ·o (𝑤 ·o 𝑢))⟩)
6362eceq1d 6565 . . . . . . . . 9 ((((((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)) ·o 𝑢) +o ((𝑦 ·o 𝑤) ·o 𝑣)) = ((𝑥 ·o (𝑤 ·o 𝑢)) +o (𝑦 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)))) ∧ ((𝑦 ·o 𝑤) ·o 𝑢) = (𝑦 ·o (𝑤 ·o 𝑢))) → [⟨((((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)) ·o 𝑢) +o ((𝑦 ·o 𝑤) ·o 𝑣)), ((𝑦 ·o 𝑤) ·o 𝑢)⟩] ~Q0 = [⟨((𝑥 ·o (𝑤 ·o 𝑢)) +o (𝑦 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)))), (𝑦 ·o (𝑤 ·o 𝑢))⟩] ~Q0 )
6459, 61, 63syl2anc 411 . . . . . . . 8 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → [⟨((((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)) ·o 𝑢) +o ((𝑦 ·o 𝑤) ·o 𝑣)), ((𝑦 ·o 𝑤) ·o 𝑢)⟩] ~Q0 = [⟨((𝑥 ·o (𝑤 ·o 𝑢)) +o (𝑦 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)))), (𝑦 ·o (𝑤 ·o 𝑢))⟩] ~Q0 )
65 addnnnq0 7439 . . . . . . . . . . . 12 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = [⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~Q0 )
6665oveq1d 5884 . . . . . . . . . . 11 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → (([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = ([⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))
6766adantr 276 . . . . . . . . . 10 ((((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = ([⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))
68 addassnq0lemcl 7451 . . . . . . . . . . 11 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → (((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)) ∈ ω ∧ (𝑦 ·o 𝑤) ∈ N))
69 addnnnq0 7439 . . . . . . . . . . 11 (((((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)) ∈ ω ∧ (𝑦 ·o 𝑤) ∈ N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ([⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = [⟨((((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)) ·o 𝑢) +o ((𝑦 ·o 𝑤) ·o 𝑣)), ((𝑦 ·o 𝑤) ·o 𝑢)⟩] ~Q0 )
7068, 69sylan 283 . . . . . . . . . 10 ((((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ([⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = [⟨((((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)) ·o 𝑢) +o ((𝑦 ·o 𝑤) ·o 𝑣)), ((𝑦 ·o 𝑤) ·o 𝑢)⟩] ~Q0 )
7167, 70eqtrd 2210 . . . . . . . . 9 ((((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = [⟨((((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)) ·o 𝑢) +o ((𝑦 ·o 𝑤) ·o 𝑣)), ((𝑦 ·o 𝑤) ·o 𝑢)⟩] ~Q0 )
72713impa 1194 . . . . . . . 8 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = [⟨((((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)) ·o 𝑢) +o ((𝑦 ·o 𝑤) ·o 𝑣)), ((𝑦 ·o 𝑤) ·o 𝑢)⟩] ~Q0 )
73 addnnnq0 7439 . . . . . . . . . . . 12 (((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = [⟨((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)), (𝑤 ·o 𝑢)⟩] ~Q0 )
7473oveq2d 5885 . . . . . . . . . . 11 (((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)), (𝑤 ·o 𝑢)⟩] ~Q0 ))
7574adantl 277 . . . . . . . . . 10 (((𝑥 ∈ ω ∧ 𝑦N) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N))) → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)), (𝑤 ·o 𝑢)⟩] ~Q0 ))
76 addassnq0lemcl 7451 . . . . . . . . . . 11 (((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)) ∈ ω ∧ (𝑤 ·o 𝑢) ∈ N))
77 addnnnq0 7439 . . . . . . . . . . 11 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)) ∈ ω ∧ (𝑤 ·o 𝑢) ∈ N)) → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)), (𝑤 ·o 𝑢)⟩] ~Q0 ) = [⟨((𝑥 ·o (𝑤 ·o 𝑢)) +o (𝑦 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)))), (𝑦 ·o (𝑤 ·o 𝑢))⟩] ~Q0 )
7876, 77sylan2 286 . . . . . . . . . 10 (((𝑥 ∈ ω ∧ 𝑦N) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N))) → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)), (𝑤 ·o 𝑢)⟩] ~Q0 ) = [⟨((𝑥 ·o (𝑤 ·o 𝑢)) +o (𝑦 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)))), (𝑦 ·o (𝑤 ·o 𝑢))⟩] ~Q0 )
7975, 78eqtrd 2210 . . . . . . . . 9 (((𝑥 ∈ ω ∧ 𝑦N) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N))) → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = [⟨((𝑥 ·o (𝑤 ·o 𝑢)) +o (𝑦 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)))), (𝑦 ·o (𝑤 ·o 𝑢))⟩] ~Q0 )
80793impb 1199 . . . . . . . 8 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = [⟨((𝑥 ·o (𝑤 ·o 𝑢)) +o (𝑦 ·o ((𝑧 ·o 𝑢) +o (𝑤 ·o 𝑣)))), (𝑦 ·o (𝑤 ·o 𝑢))⟩] ~Q0 )
8164, 72, 803eqtr4d 2220 . . . . . . 7 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )))
82813expib 1206 . . . . . 6 ((𝑥 ∈ ω ∧ 𝑦N) → (((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))))
831, 17, 82ecoptocl 6616 . . . . 5 (𝐴Q0 → (((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ((𝐴 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = (𝐴 +Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))))
8483com12 30 . . . 4 (((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (𝐴Q0 → ((𝐴 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = (𝐴 +Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))))
851, 7, 12, 842ecoptocl 6617 . . 3 ((𝐵Q0𝐶Q0) → (𝐴Q0 → ((𝐴 +Q0 𝐵) +Q0 𝐶) = (𝐴 +Q0 (𝐵 +Q0 𝐶))))
8685com12 30 . 2 (𝐴Q0 → ((𝐵Q0𝐶Q0) → ((𝐴 +Q0 𝐵) +Q0 𝐶) = (𝐴 +Q0 (𝐵 +Q0 𝐶))))
87863impib 1201 1 ((𝐴Q0𝐵Q0𝐶Q0) → ((𝐴 +Q0 𝐵) +Q0 𝐶) = (𝐴 +Q0 (𝐵 +Q0 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2148  cop 3594  ωcom 4586  (class class class)co 5869   +o coa 6408   ·o comu 6409  [cec 6527  Ncnpi 7262   ~Q0 ceq0 7276  Q0cnq0 7277   +Q0 cplq0 7279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-oadd 6415  df-omul 6416  df-er 6529  df-ec 6531  df-qs 6535  df-ni 7294  df-mi 7296  df-enq0 7414  df-nq0 7415  df-plq0 7417
This theorem is referenced by:  prarloclemcalc  7492
  Copyright terms: Public domain W3C validator