| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caovcld | GIF version | ||
| Description: Convert an operation closure law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.) |
| Ref | Expression |
|---|---|
| caovclg.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥𝐹𝑦) ∈ 𝐸) |
| caovcld.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| caovcld.3 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| caovcld | ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | caovcld.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
| 3 | caovcld.3 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
| 4 | caovclg.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥𝐹𝑦) ∈ 𝐸) | |
| 5 | 4 | caovclg 6101 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐴𝐹𝐵) ∈ 𝐸) |
| 6 | 1, 2, 3, 5 | syl12anc 1248 | 1 ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝐸) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2176 (class class class)co 5946 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-iota 5233 df-fv 5280 df-ov 5949 |
| This theorem is referenced by: caovdir2d 6125 caov4d 6133 caovdilemd 6140 caovlem2d 6141 ecopovtrn 6721 ecopovtrng 6724 ordpipqqs 7489 ltanqg 7515 ltmnqg 7516 recexprlem1ssu 7749 mulgt0sr 7893 mulextsr1lem 7895 axmulass 7988 frec2uzrdg 10556 frecuzrdgsuc 10561 frecuzrdgsuctlem 10570 iseqovex 10605 seq3val 10607 seqf 10611 seq3p1 10612 seqp1cd 10617 seq3clss 10618 seq3distr 10679 climcn2 11653 qusaddvallemg 13198 grpinva 13251 |
| Copyright terms: Public domain | W3C validator |