ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovcld GIF version

Theorem caovcld 5995
Description: Convert an operation closure law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovclg.1 ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥𝐹𝑦) ∈ 𝐸)
caovcld.2 (𝜑𝐴𝐶)
caovcld.3 (𝜑𝐵𝐷)
Assertion
Ref Expression
caovcld (𝜑 → (𝐴𝐹𝐵) ∈ 𝐸)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐸,𝑦   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem caovcld
StepHypRef Expression
1 id 19 . 2 (𝜑𝜑)
2 caovcld.2 . 2 (𝜑𝐴𝐶)
3 caovcld.3 . 2 (𝜑𝐵𝐷)
4 caovclg.1 . . 3 ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥𝐹𝑦) ∈ 𝐸)
54caovclg 5994 . 2 ((𝜑 ∧ (𝐴𝐶𝐵𝐷)) → (𝐴𝐹𝐵) ∈ 𝐸)
61, 2, 3, 5syl12anc 1226 1 (𝜑 → (𝐴𝐹𝐵) ∈ 𝐸)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 2136  (class class class)co 5842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845
This theorem is referenced by:  caovdir2d  6018  caov4d  6026  caovdilemd  6033  caovlem2d  6034  ecopovtrn  6598  ecopovtrng  6601  ordpipqqs  7315  ltanqg  7341  ltmnqg  7342  recexprlem1ssu  7575  mulgt0sr  7719  mulextsr1lem  7721  axmulass  7814  frec2uzrdg  10344  frecuzrdgsuc  10349  frecuzrdgsuctlem  10358  iseqovex  10391  seq3val  10393  seqf  10396  seq3p1  10397  seqp1cd  10401  seq3clss  10402  seq3distr  10448  climcn2  11250  grprinvd  12617
  Copyright terms: Public domain W3C validator