| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caovcld | GIF version | ||
| Description: Convert an operation closure law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.) |
| Ref | Expression |
|---|---|
| caovclg.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥𝐹𝑦) ∈ 𝐸) |
| caovcld.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| caovcld.3 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| caovcld | ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | caovcld.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
| 3 | caovcld.3 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
| 4 | caovclg.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥𝐹𝑦) ∈ 𝐸) | |
| 5 | 4 | caovclg 6099 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐴𝐹𝐵) ∈ 𝐸) |
| 6 | 1, 2, 3, 5 | syl12anc 1248 | 1 ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝐸) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2176 (class class class)co 5944 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 |
| This theorem is referenced by: caovdir2d 6123 caov4d 6131 caovdilemd 6138 caovlem2d 6139 ecopovtrn 6719 ecopovtrng 6722 ordpipqqs 7487 ltanqg 7513 ltmnqg 7514 recexprlem1ssu 7747 mulgt0sr 7891 mulextsr1lem 7893 axmulass 7986 frec2uzrdg 10554 frecuzrdgsuc 10559 frecuzrdgsuctlem 10568 iseqovex 10603 seq3val 10605 seqf 10609 seq3p1 10610 seqp1cd 10615 seq3clss 10616 seq3distr 10677 climcn2 11620 qusaddvallemg 13165 grpinva 13218 |
| Copyright terms: Public domain | W3C validator |