ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvoprab1 GIF version

Theorem cbvoprab1 6016
Description: Rule used to change first bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 20-Dec-2008.) (Revised by Mario Carneiro, 5-Dec-2016.)
Hypotheses
Ref Expression
cbvoprab1.1 𝑤𝜑
cbvoprab1.2 𝑥𝜓
cbvoprab1.3 (𝑥 = 𝑤 → (𝜑𝜓))
Assertion
Ref Expression
cbvoprab1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑤, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
Distinct variable group:   𝑥,𝑦,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝜓(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cbvoprab1
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 nfv 1550 . . . . . 6 𝑤 𝑣 = ⟨𝑥, 𝑦
2 cbvoprab1.1 . . . . . 6 𝑤𝜑
31, 2nfan 1587 . . . . 5 𝑤(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
43nfex 1659 . . . 4 𝑤𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
5 nfv 1550 . . . . . 6 𝑥 𝑣 = ⟨𝑤, 𝑦
6 cbvoprab1.2 . . . . . 6 𝑥𝜓
75, 6nfan 1587 . . . . 5 𝑥(𝑣 = ⟨𝑤, 𝑦⟩ ∧ 𝜓)
87nfex 1659 . . . 4 𝑥𝑦(𝑣 = ⟨𝑤, 𝑦⟩ ∧ 𝜓)
9 opeq1 3818 . . . . . . 7 (𝑥 = 𝑤 → ⟨𝑥, 𝑦⟩ = ⟨𝑤, 𝑦⟩)
109eqeq2d 2216 . . . . . 6 (𝑥 = 𝑤 → (𝑣 = ⟨𝑥, 𝑦⟩ ↔ 𝑣 = ⟨𝑤, 𝑦⟩))
11 cbvoprab1.3 . . . . . 6 (𝑥 = 𝑤 → (𝜑𝜓))
1210, 11anbi12d 473 . . . . 5 (𝑥 = 𝑤 → ((𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑣 = ⟨𝑤, 𝑦⟩ ∧ 𝜓)))
1312exbidv 1847 . . . 4 (𝑥 = 𝑤 → (∃𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦(𝑣 = ⟨𝑤, 𝑦⟩ ∧ 𝜓)))
144, 8, 13cbvex 1778 . . 3 (∃𝑥𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑤𝑦(𝑣 = ⟨𝑤, 𝑦⟩ ∧ 𝜓))
1514opabbii 4110 . 2 {⟨𝑣, 𝑧⟩ ∣ ∃𝑥𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {⟨𝑣, 𝑧⟩ ∣ ∃𝑤𝑦(𝑣 = ⟨𝑤, 𝑦⟩ ∧ 𝜓)}
16 dfoprab2 5991 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑣, 𝑧⟩ ∣ ∃𝑥𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
17 dfoprab2 5991 . 2 {⟨⟨𝑤, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨𝑣, 𝑧⟩ ∣ ∃𝑤𝑦(𝑣 = ⟨𝑤, 𝑦⟩ ∧ 𝜓)}
1815, 16, 173eqtr4i 2235 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑤, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wnf 1482  wex 1514  cop 3635  {copab 4103  {coprab 5944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-opab 4105  df-oprab 5947
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator