![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvoprab1 | GIF version |
Description: Rule used to change first bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 20-Dec-2008.) (Revised by Mario Carneiro, 5-Dec-2016.) |
Ref | Expression |
---|---|
cbvoprab1.1 | ⊢ Ⅎ𝑤𝜑 |
cbvoprab1.2 | ⊢ Ⅎ𝑥𝜓 |
cbvoprab1.3 | ⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvoprab1 | ⊢ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑤, 𝑦⟩, 𝑧⟩ ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1528 | . . . . . 6 ⊢ Ⅎ𝑤 𝑣 = ⟨𝑥, 𝑦⟩ | |
2 | cbvoprab1.1 | . . . . . 6 ⊢ Ⅎ𝑤𝜑 | |
3 | 1, 2 | nfan 1565 | . . . . 5 ⊢ Ⅎ𝑤(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) |
4 | 3 | nfex 1637 | . . . 4 ⊢ Ⅎ𝑤∃𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) |
5 | nfv 1528 | . . . . . 6 ⊢ Ⅎ𝑥 𝑣 = ⟨𝑤, 𝑦⟩ | |
6 | cbvoprab1.2 | . . . . . 6 ⊢ Ⅎ𝑥𝜓 | |
7 | 5, 6 | nfan 1565 | . . . . 5 ⊢ Ⅎ𝑥(𝑣 = ⟨𝑤, 𝑦⟩ ∧ 𝜓) |
8 | 7 | nfex 1637 | . . . 4 ⊢ Ⅎ𝑥∃𝑦(𝑣 = ⟨𝑤, 𝑦⟩ ∧ 𝜓) |
9 | opeq1 3780 | . . . . . . 7 ⊢ (𝑥 = 𝑤 → ⟨𝑥, 𝑦⟩ = ⟨𝑤, 𝑦⟩) | |
10 | 9 | eqeq2d 2189 | . . . . . 6 ⊢ (𝑥 = 𝑤 → (𝑣 = ⟨𝑥, 𝑦⟩ ↔ 𝑣 = ⟨𝑤, 𝑦⟩)) |
11 | cbvoprab1.3 | . . . . . 6 ⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜓)) | |
12 | 10, 11 | anbi12d 473 | . . . . 5 ⊢ (𝑥 = 𝑤 → ((𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑣 = ⟨𝑤, 𝑦⟩ ∧ 𝜓))) |
13 | 12 | exbidv 1825 | . . . 4 ⊢ (𝑥 = 𝑤 → (∃𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦(𝑣 = ⟨𝑤, 𝑦⟩ ∧ 𝜓))) |
14 | 4, 8, 13 | cbvex 1756 | . . 3 ⊢ (∃𝑥∃𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑤∃𝑦(𝑣 = ⟨𝑤, 𝑦⟩ ∧ 𝜓)) |
15 | 14 | opabbii 4072 | . 2 ⊢ {⟨𝑣, 𝑧⟩ ∣ ∃𝑥∃𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {⟨𝑣, 𝑧⟩ ∣ ∃𝑤∃𝑦(𝑣 = ⟨𝑤, 𝑦⟩ ∧ 𝜓)} |
16 | dfoprab2 5924 | . 2 ⊢ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑣, 𝑧⟩ ∣ ∃𝑥∃𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} | |
17 | dfoprab2 5924 | . 2 ⊢ {⟨⟨𝑤, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨𝑣, 𝑧⟩ ∣ ∃𝑤∃𝑦(𝑣 = ⟨𝑤, 𝑦⟩ ∧ 𝜓)} | |
18 | 15, 16, 17 | 3eqtr4i 2208 | 1 ⊢ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑤, 𝑦⟩, 𝑧⟩ ∣ 𝜓} |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 Ⅎwnf 1460 ∃wex 1492 ⟨cop 3597 {copab 4065 {coprab 5878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-opab 4067 df-oprab 5881 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |