ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidac GIF version

Theorem exmidac 7271
Description: The axiom of choice implies excluded middle. See acexmid 5918 for more discussion of this theorem and a way of stating it without using CHOICE or EXMID. (Contributed by Jim Kingdon, 21-Nov-2023.)
Assertion
Ref Expression
exmidac (CHOICEEXMID)

Proof of Theorem exmidac
Dummy variables 𝑥 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2200 . . . 4 (𝑢 = 𝑥 → (𝑢 = ∅ ↔ 𝑥 = ∅))
21orbi1d 792 . . 3 (𝑢 = 𝑥 → ((𝑢 = ∅ ∨ 𝑦 = {∅}) ↔ (𝑥 = ∅ ∨ 𝑦 = {∅})))
32cbvrabv 2759 . 2 {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = ∅ ∨ 𝑦 = {∅})} = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝑦 = {∅})}
4 eqeq1 2200 . . . 4 (𝑢 = 𝑥 → (𝑢 = {∅} ↔ 𝑥 = {∅}))
54orbi1d 792 . . 3 (𝑢 = 𝑥 → ((𝑢 = {∅} ∨ 𝑦 = {∅}) ↔ (𝑥 = {∅} ∨ 𝑦 = {∅})))
65cbvrabv 2759 . 2 {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ 𝑦 = {∅})} = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝑦 = {∅})}
7 eqid 2193 . 2 {{𝑢 ∈ {∅, {∅}} ∣ (𝑢 = ∅ ∨ 𝑦 = {∅})}, {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ 𝑦 = {∅})}} = {{𝑢 ∈ {∅, {∅}} ∣ (𝑢 = ∅ ∨ 𝑦 = {∅})}, {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ 𝑦 = {∅})}}
83, 6, 7exmidaclem 7270 1 (CHOICEEXMID)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 709   = wceq 1364  {crab 2476  c0 3447  {csn 3619  {cpr 3620  EXMIDwem 4224  CHOICEwac 7267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-exmid 4225  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ac 7268
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator