| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidac | GIF version | ||
| Description: The axiom of choice implies excluded middle. See acexmid 5956 for more discussion of this theorem and a way of stating it without using CHOICE or EXMID. (Contributed by Jim Kingdon, 21-Nov-2023.) |
| Ref | Expression |
|---|---|
| exmidac | ⊢ (CHOICE → EXMID) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2213 | . . . 4 ⊢ (𝑢 = 𝑥 → (𝑢 = ∅ ↔ 𝑥 = ∅)) | |
| 2 | 1 | orbi1d 793 | . . 3 ⊢ (𝑢 = 𝑥 → ((𝑢 = ∅ ∨ 𝑦 = {∅}) ↔ (𝑥 = ∅ ∨ 𝑦 = {∅}))) |
| 3 | 2 | cbvrabv 2772 | . 2 ⊢ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = ∅ ∨ 𝑦 = {∅})} = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝑦 = {∅})} |
| 4 | eqeq1 2213 | . . . 4 ⊢ (𝑢 = 𝑥 → (𝑢 = {∅} ↔ 𝑥 = {∅})) | |
| 5 | 4 | orbi1d 793 | . . 3 ⊢ (𝑢 = 𝑥 → ((𝑢 = {∅} ∨ 𝑦 = {∅}) ↔ (𝑥 = {∅} ∨ 𝑦 = {∅}))) |
| 6 | 5 | cbvrabv 2772 | . 2 ⊢ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ 𝑦 = {∅})} = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝑦 = {∅})} |
| 7 | eqid 2206 | . 2 ⊢ {{𝑢 ∈ {∅, {∅}} ∣ (𝑢 = ∅ ∨ 𝑦 = {∅})}, {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ 𝑦 = {∅})}} = {{𝑢 ∈ {∅, {∅}} ∣ (𝑢 = ∅ ∨ 𝑦 = {∅})}, {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ 𝑦 = {∅})}} | |
| 8 | 3, 6, 7 | exmidaclem 7336 | 1 ⊢ (CHOICE → EXMID) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 710 = wceq 1373 {crab 2489 ∅c0 3464 {csn 3638 {cpr 3639 EXMIDwem 4246 CHOICEwac 7333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-exmid 4247 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-ac 7334 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |