Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exmidac | GIF version |
Description: The axiom of choice implies excluded middle. See acexmid 5864 for more discussion of this theorem and a way of stating it without using CHOICE or EXMID. (Contributed by Jim Kingdon, 21-Nov-2023.) |
Ref | Expression |
---|---|
exmidac | ⊢ (CHOICE → EXMID) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2182 | . . . 4 ⊢ (𝑢 = 𝑥 → (𝑢 = ∅ ↔ 𝑥 = ∅)) | |
2 | 1 | orbi1d 791 | . . 3 ⊢ (𝑢 = 𝑥 → ((𝑢 = ∅ ∨ 𝑦 = {∅}) ↔ (𝑥 = ∅ ∨ 𝑦 = {∅}))) |
3 | 2 | cbvrabv 2734 | . 2 ⊢ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = ∅ ∨ 𝑦 = {∅})} = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝑦 = {∅})} |
4 | eqeq1 2182 | . . . 4 ⊢ (𝑢 = 𝑥 → (𝑢 = {∅} ↔ 𝑥 = {∅})) | |
5 | 4 | orbi1d 791 | . . 3 ⊢ (𝑢 = 𝑥 → ((𝑢 = {∅} ∨ 𝑦 = {∅}) ↔ (𝑥 = {∅} ∨ 𝑦 = {∅}))) |
6 | 5 | cbvrabv 2734 | . 2 ⊢ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ 𝑦 = {∅})} = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝑦 = {∅})} |
7 | eqid 2175 | . 2 ⊢ {{𝑢 ∈ {∅, {∅}} ∣ (𝑢 = ∅ ∨ 𝑦 = {∅})}, {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ 𝑦 = {∅})}} = {{𝑢 ∈ {∅, {∅}} ∣ (𝑢 = ∅ ∨ 𝑦 = {∅})}, {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ 𝑦 = {∅})}} | |
8 | 3, 6, 7 | exmidaclem 7197 | 1 ⊢ (CHOICE → EXMID) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 708 = wceq 1353 {crab 2457 ∅c0 3420 {csn 3589 {cpr 3590 EXMIDwem 4189 CHOICEwac 7194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-exmid 4190 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-ac 7195 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |