| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidac | GIF version | ||
| Description: The axiom of choice implies excluded middle. See acexmid 5999 for more discussion of this theorem and a way of stating it without using CHOICE or EXMID. (Contributed by Jim Kingdon, 21-Nov-2023.) |
| Ref | Expression |
|---|---|
| exmidac | ⊢ (CHOICE → EXMID) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2236 | . . . 4 ⊢ (𝑢 = 𝑥 → (𝑢 = ∅ ↔ 𝑥 = ∅)) | |
| 2 | 1 | orbi1d 796 | . . 3 ⊢ (𝑢 = 𝑥 → ((𝑢 = ∅ ∨ 𝑦 = {∅}) ↔ (𝑥 = ∅ ∨ 𝑦 = {∅}))) |
| 3 | 2 | cbvrabv 2798 | . 2 ⊢ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = ∅ ∨ 𝑦 = {∅})} = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝑦 = {∅})} |
| 4 | eqeq1 2236 | . . . 4 ⊢ (𝑢 = 𝑥 → (𝑢 = {∅} ↔ 𝑥 = {∅})) | |
| 5 | 4 | orbi1d 796 | . . 3 ⊢ (𝑢 = 𝑥 → ((𝑢 = {∅} ∨ 𝑦 = {∅}) ↔ (𝑥 = {∅} ∨ 𝑦 = {∅}))) |
| 6 | 5 | cbvrabv 2798 | . 2 ⊢ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ 𝑦 = {∅})} = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝑦 = {∅})} |
| 7 | eqid 2229 | . 2 ⊢ {{𝑢 ∈ {∅, {∅}} ∣ (𝑢 = ∅ ∨ 𝑦 = {∅})}, {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ 𝑦 = {∅})}} = {{𝑢 ∈ {∅, {∅}} ∣ (𝑢 = ∅ ∨ 𝑦 = {∅})}, {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ 𝑦 = {∅})}} | |
| 8 | 3, 6, 7 | exmidaclem 7386 | 1 ⊢ (CHOICE → EXMID) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 713 = wceq 1395 {crab 2512 ∅c0 3491 {csn 3666 {cpr 3667 EXMIDwem 4277 CHOICEwac 7383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-exmid 4278 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ac 7384 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |